Cargando…
Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers
Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal hom...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257147/ https://www.ncbi.nlm.nih.gov/pubmed/22272150 http://dx.doi.org/10.3390/ijms12129576 |
_version_ | 1782221114142883840 |
---|---|
author | Koedrith, Preeyaporn Seo, Young Rok |
author_facet | Koedrith, Preeyaporn Seo, Young Rok |
author_sort | Koedrith, Preeyaporn |
collection | PubMed |
description | Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression. |
format | Online Article Text |
id | pubmed-3257147 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-32571472012-01-23 Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers Koedrith, Preeyaporn Seo, Young Rok Int J Mol Sci Review Metal compounds such as arsenic, cadmium, chromium, cobalt, lead, mercury, and nickel are classified as carcinogens affecting human health through occupational and environmental exposure. However, the underlying mechanisms involved in tumor formation are not well clarified. Interference of metal homeostasis may result in oxidative stress which represents an imbalance between production of free radicals and the system’s ability to readily detoxify reactive intermediates. This event consequently causes DNA damage, lipid peroxidation, protein modification, and possibly symptomatic effects for various diseases including cancer. This review discusses predominant modes of action and numerous molecular markers. Attention is paid to metal-induced generation of free radicals, the phenomenon of oxidative stress, damage to DNA, lipid, and proteins, responsive signal transduction pathways with major roles in cell growth and development, and roles of antioxidant enzymatic and DNA repair systems. Interaction of non-enzymatic antioxidants (carotenoids, flavonoids, glutathione, selenium, vitamin C, vitamin E, and others) with cellular oxidative stress markers (catalase, glutathione peroxidase, and superoxide dismutase) as well as certain regulatory factors, including AP-1, NF-κB, Ref-1, and p53 is also reviewed. Dysregulation of protective pathways, including cellular antioxidant network against free radicals as well as DNA repair deficiency is related to oncogenic stimulation. These observations provide evidence that emerging oxidative stress-responsive regulatory factors and DNA repair proteins are putative predictive factors for tumor initiation and progression. Molecular Diversity Preservation International (MDPI) 2011-12-20 /pmc/articles/PMC3257147/ /pubmed/22272150 http://dx.doi.org/10.3390/ijms12129576 Text en © 2011 by the authors; licensee MDPI, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Review Koedrith, Preeyaporn Seo, Young Rok Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title | Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_full | Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_fullStr | Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_full_unstemmed | Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_short | Advances in Carcinogenic Metal Toxicity and Potential Molecular Markers |
title_sort | advances in carcinogenic metal toxicity and potential molecular markers |
topic | Review |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257147/ https://www.ncbi.nlm.nih.gov/pubmed/22272150 http://dx.doi.org/10.3390/ijms12129576 |
work_keys_str_mv | AT koedrithpreeyaporn advancesincarcinogenicmetaltoxicityandpotentialmolecularmarkers AT seoyoungrok advancesincarcinogenicmetaltoxicityandpotentialmolecularmarkers |