Cargando…

Nonconservative current-induced forces: A physical interpretation

We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general d...

Descripción completa

Detalles Bibliográficos
Autores principales: Todorov, Tchavdar N, Dundas, Daniel, Paxton, Anthony T, Horsfield, Andrew P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Beilstein-Institut 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3257496/
https://www.ncbi.nlm.nih.gov/pubmed/22259754
http://dx.doi.org/10.3762/bjnano.2.79
Descripción
Sumario:We give a physical interpretation of the recently demonstrated nonconservative nature of interatomic forces in current-carrying nanostructures. We start from the analytical expression for the curl of these forces, and evaluate it for a point defect in a current-carrying system. We obtain a general definition of the capacity of electrical current flow to exert a nonconservative force, and thus do net work around closed paths, by a formal noninvasive test procedure. Second, we show that the gain in atomic kinetic energy over time, generated by nonconservative current-induced forces, is equivalent to the uncompensated stimulated emission of directional phonons. This connection with electron–phonon interactions quantifies explicitly the intuitive notion that nonconservative forces work by angular momentum transfer.