Cargando…

Regulation of the Na,K-ATPase Gamma-Subunit FXYD2 by Runx1 and Ret Signaling in Normal and Injured Non-Peptidergic Nociceptive Sensory Neurons

Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures corre...

Descripción completa

Detalles Bibliográficos
Autores principales: Ventéo, Stéphanie, Bourane, Steeve, Méchaly, Ilana, Sar, Chamroeun, Abdel Samad, Omar, Puech, Sylvie, Blostein, Rhoda, Valmier, Jean, Pattyn, Alexandre, Carroll, Patrick
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3258241/
https://www.ncbi.nlm.nih.gov/pubmed/22253804
http://dx.doi.org/10.1371/journal.pone.0029852
Descripción
Sumario:Dorsal root ganglia (DRGs) contain the cell bodies of sensory neurons which relay nociceptive, thermoceptive, mechanoceptive and proprioceptive information from peripheral tissues toward the central nervous system. These neurons establish constant communication with their targets which insures correct maturation and functioning of the somato-sensory nervous system. Interfering with this two-way communication leads to cellular, electrophysiological and molecular modifications that can eventually cause neuropathic conditions. In this study we reveal that FXYD2, which encodes the gamma-subunit of the Na,K-ATPase reported so far to be mainly expressed in the kidney, is induced in the mouse DRGs at postnatal stages where it is restricted specifically to the TrkB-expressing mechanoceptive and Ret-positive/IB4-binding non-peptidergic nociceptive neurons. In non-peptidergic nociceptors, we show that the transcription factor Runx1 controls FXYD2 expression during the maturation of the somato-sensory system, partly through regulation of the tyrosine kinase receptor Ret. Moreover, Ret signaling maintains FXYD2 expression in adults as demonstrated by the axotomy-induced down-regulation of the gene that can be reverted by in vivo delivery of GDNF family ligands. Altogether, these results establish FXYD2 as a specific marker of defined sensory neuron subtypes and a new target of the Ret signaling pathway during normal maturation of the non-peptidergic nociceptive neurons and after sciatic nerve injury.