Cargando…

Development of Monoclonal Antibodies Specific for Glycated Prion Protein

Transmissive spongiform encephalopathies (TSE) are neurodegenerative diseases characterized by depositions of abnormally folded prion protein (PrP(TSE)) in brain. PrP(TSE) is at present the only specific biochemical marker of human and animal TSE. As deposits of PrP(TSE) remain in the body for long...

Descripción completa

Detalles Bibliográficos
Autores principales: Dvorakova, Eva, Prouza, Marek, Janouskova, Olga, Panigaj, Martin, Holada, Karel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Taylor & Francis 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3259618/
https://www.ncbi.nlm.nih.gov/pubmed/22043908
http://dx.doi.org/10.1080/15287394.2011.618976
Descripción
Sumario:Transmissive spongiform encephalopathies (TSE) are neurodegenerative diseases characterized by depositions of abnormally folded prion protein (PrP(TSE)) in brain. PrP(TSE) is at present the only specific biochemical marker of human and animal TSE. As deposits of PrP(TSE) remain in the body for long periods, there is substantial chance of them being nonenzymatically modified by glycation. The detection of glycated PrP(TSE) may have potential to serve as a diagnostic marker. Monoclonal antibodies specific for carboxymethyl lysine/arginine-modified prion protein were prepared. Recombinant human prion protein (rhPrP) was bacterially expressed and purified by affinity chromatography. rhPrP was modified by glyoxylic acid that introduces carboxymethyl groups on lysine and arginine residues present within the molecule of the protein. Modified rhPrP (rhPrP-CML) was used for immunization of 6 mice, and 960 hybridoma cells were prepared. Screening of cell supernatants resulted in the selection of four promising clones. One of them (EM-31) strongly reacts with human and mouse recombinant PrP-CML, and three other clones react also with CML in vitro modified human and mouse brain PrP. Besides possible implication in TSE diagnostics, the antibodies may serve as tolls to advance our knowledge regarding the role of glycation in the prion pathophysiology.