Cargando…
Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex
BACKGROUND: As a poorly water-soluble drug, the oral application of morin is limited by its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of morin. METH...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260034/ https://www.ncbi.nlm.nih.gov/pubmed/22267925 http://dx.doi.org/10.2147/IJN.S25824 |
_version_ | 1782221428616069120 |
---|---|
author | Zhang, Jinjie Peng, Qiang Shi, Sanjun Zhang, Qiang Sun, Xun Gong, Tao Zhang, Zhirong |
author_facet | Zhang, Jinjie Peng, Qiang Shi, Sanjun Zhang, Qiang Sun, Xun Gong, Tao Zhang, Zhirong |
author_sort | Zhang, Jinjie |
collection | PubMed |
description | BACKGROUND: As a poorly water-soluble drug, the oral application of morin is limited by its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of morin. METHODS: Morin-phospholipid complex (MPC) was prepared by a solvent evaporation method and characterized by infrared spectroscopy and X-ray diffraction. After formation of MPC, it was found that the liposolubility of morin was significantly increased, as verified through solubility studies. An orthogonal design was employed to screen the blank SNEDDS, using emulsifying rate and particle size as evaluation indices. Ternary phase diagrams were then constructed to investigate the effects of drug loading on the self-emulsifying performance of the optimized blank SNEDDS. Subsequently, in vivo pharmacokinetic parameters of the morin-phospholipid complex self-nanoemulsifying drug delivery system (MPC-SNEDDS) were investigated in Wistar rats (200 mg/kg of morin by oral administration). RESULTS: The optimum formulation was composed of Labrafil(®) M 1944 CS, Cremophor(®) RH 40, and Transcutol(®) P (3:5:3, w/w), which gave a mean particle size of approximately 140 nm. Oral delivery of the MPC-SNEDDS exhibited a significantly greater C(max) (28.60 μg/mL) than the morin suspension (5.53 μg/mL) or MPC suspension (23.74 μg/mL) (all P < 0.05). T(max) was prolonged from 0.48 to 0.77 hours and to 1 hour for MPC and MPC-SNEDDS, respectively. In addition, the relative oral bioavailability of morin formulated in the MPC-SNEDDS was 6.23-fold higher than that of the morin suspension, and was significantly higher than that of the MPC suspension (P < 0.05). CONCLUSION: The study demonstrated that a SNEDDS combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of morin. |
format | Online Article Text |
id | pubmed-3260034 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-32600342012-01-20 Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex Zhang, Jinjie Peng, Qiang Shi, Sanjun Zhang, Qiang Sun, Xun Gong, Tao Zhang, Zhirong Int J Nanomedicine Original Research BACKGROUND: As a poorly water-soluble drug, the oral application of morin is limited by its low oral bioavailability. In this study, a new self-nanoemulsifying drug delivery system (SNEDDS), based on the phospholipid complex technique, was developed to improve the oral bioavailability of morin. METHODS: Morin-phospholipid complex (MPC) was prepared by a solvent evaporation method and characterized by infrared spectroscopy and X-ray diffraction. After formation of MPC, it was found that the liposolubility of morin was significantly increased, as verified through solubility studies. An orthogonal design was employed to screen the blank SNEDDS, using emulsifying rate and particle size as evaluation indices. Ternary phase diagrams were then constructed to investigate the effects of drug loading on the self-emulsifying performance of the optimized blank SNEDDS. Subsequently, in vivo pharmacokinetic parameters of the morin-phospholipid complex self-nanoemulsifying drug delivery system (MPC-SNEDDS) were investigated in Wistar rats (200 mg/kg of morin by oral administration). RESULTS: The optimum formulation was composed of Labrafil(®) M 1944 CS, Cremophor(®) RH 40, and Transcutol(®) P (3:5:3, w/w), which gave a mean particle size of approximately 140 nm. Oral delivery of the MPC-SNEDDS exhibited a significantly greater C(max) (28.60 μg/mL) than the morin suspension (5.53 μg/mL) or MPC suspension (23.74 μg/mL) (all P < 0.05). T(max) was prolonged from 0.48 to 0.77 hours and to 1 hour for MPC and MPC-SNEDDS, respectively. In addition, the relative oral bioavailability of morin formulated in the MPC-SNEDDS was 6.23-fold higher than that of the morin suspension, and was significantly higher than that of the MPC suspension (P < 0.05). CONCLUSION: The study demonstrated that a SNEDDS combined with the phospholipid complex technique was a promising strategy to enhance the oral bioavailability of morin. Dove Medical Press 2011 2011-12-19 /pmc/articles/PMC3260034/ /pubmed/22267925 http://dx.doi.org/10.2147/IJN.S25824 Text en © 2011 Zhang et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Zhang, Jinjie Peng, Qiang Shi, Sanjun Zhang, Qiang Sun, Xun Gong, Tao Zhang, Zhirong Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title | Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title_full | Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title_fullStr | Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title_full_unstemmed | Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title_short | Preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (SNEDDS) loaded with morin-phospholipid complex |
title_sort | preparation, characterization, and in vivo evaluation of a self-nanoemulsifying drug delivery system (snedds) loaded with morin-phospholipid complex |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260034/ https://www.ncbi.nlm.nih.gov/pubmed/22267925 http://dx.doi.org/10.2147/IJN.S25824 |
work_keys_str_mv | AT zhangjinjie preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT pengqiang preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT shisanjun preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT zhangqiang preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT sunxun preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT gongtao preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex AT zhangzhirong preparationcharacterizationandinvivoevaluationofaselfnanoemulsifyingdrugdeliverysystemsneddsloadedwithmorinphospholipidcomplex |