Cargando…
Small-Scale Variation in Fuel Loads Differentially Affects Two Co-Dominant Bunchgrasses in a Species-Rich Pine Savanna
Ecological disturbances frequently control the occurrence and patterning of dominant plants in high-diversity communities like C(4) grasslands and savannas. In such ecosystems disturbance-related processes can have important implications for species, and for whole communities when those species are...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260174/ https://www.ncbi.nlm.nih.gov/pubmed/22272241 http://dx.doi.org/10.1371/journal.pone.0029674 |
Sumario: | Ecological disturbances frequently control the occurrence and patterning of dominant plants in high-diversity communities like C(4) grasslands and savannas. In such ecosystems disturbance-related processes can have important implications for species, and for whole communities when those species are dominant, yet mechanistic understanding of such processes remains fragmentary. Multiple bunchgrass species commonly co-dominate disturbance-dependent and species-rich pine savannas, where small-scale fuel heterogeneity may influence bunchgrass survival and growth following fires. We quantified how fire in locally varying fuel loads influenced dynamics of dominant C(4) bunchgrasses in a species-rich pine savanna in southeastern Louisiana, USA. We focused on two congeneric, co-dominant species (Schizachyrium scoparium and S. tenerum) with similar growth forms, functional traits and reproductive strategies to highlight effects of fuel heterogeneity during fires. In experimental plots with either reduced or increased fuels versus controls with unmanipulated fuels, we compared: 1) bunchgrass damage and 2) mortality from fires; 3) subsequent growth and 4) flowering. Compared to controls, fire with increased fuels caused greater damage, mortality and subsequent flowering, but did not affect post-fire growth. Fire with reduced fuels had no effect on any of the four measures. The two species responded differently to fire with increased fuels – S. scoparium incurred measurably more damage and mortality than S. tenerum. Logistic regression indicated that the larger average size of S. tenerum tussocks made them resistant to more severe burning where fuels were increased. We speculate that locally increased fuel loading may be important in pine savannas for creating colonization sites because where fuels are light or moderate, dominant bunchgrasses persist through fires. Small-scale heterogeneity in fires, and differences in how species tolerate fire may together promote shared local dominance by different bunchgrasses. |
---|