Cargando…
Manifold Learning for Human Population Structure Studies
The dimension of the population genetics data produced by next-generation sequencing platforms is extremely high. However, the “intrinsic dimensionality” of sequence data, which determines the structure of populations, is much lower. This motivates us to use locally linear embedding (LLE) which proj...
Autores principales: | Siu, Hoicheong, Jin, Li, Xiong, Momiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3260176/ https://www.ncbi.nlm.nih.gov/pubmed/22272259 http://dx.doi.org/10.1371/journal.pone.0029901 |
Ejemplares similares
-
Implication of next-generation sequencing on association studies
por: Siu, Hoicheong, et al.
Publicado: (2011) -
Investigation gene and microRNA expression in glioblastoma
por: Dong, Hua, et al.
Publicado: (2010) -
Integrated analysis of mutations, miRNA and mRNA expression in glioblastoma
por: Dong, Hua, et al.
Publicado: (2010) -
Stable continual learning through structured multiscale plasticity manifolds
por: Mishra, Poonam, et al.
Publicado: (2021) -
Unsupervised manifold learning of collective behavior
por: Titus, Mathew, et al.
Publicado: (2021)