Cargando…

From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation

Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore c...

Descripción completa

Detalles Bibliográficos
Autores principales: Cheron, G., Duvinage, M., De Saedeleer, C., Castermans, T., Bengoetxea, A., Petieau, M., Seetharaman, K., Hoellinger, T., Dan, B., Dutoit, T., Sylos Labini, F., Lacquaniti, F., Ivanenko, Y.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261492/
https://www.ncbi.nlm.nih.gov/pubmed/22272380
http://dx.doi.org/10.1155/2012/375148
_version_ 1782221603206070272
author Cheron, G.
Duvinage, M.
De Saedeleer, C.
Castermans, T.
Bengoetxea, A.
Petieau, M.
Seetharaman, K.
Hoellinger, T.
Dan, B.
Dutoit, T.
Sylos Labini, F.
Lacquaniti, F.
Ivanenko, Y.
author_facet Cheron, G.
Duvinage, M.
De Saedeleer, C.
Castermans, T.
Bengoetxea, A.
Petieau, M.
Seetharaman, K.
Hoellinger, T.
Dan, B.
Dutoit, T.
Sylos Labini, F.
Lacquaniti, F.
Ivanenko, Y.
author_sort Cheron, G.
collection PubMed
description Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG), upper limb electromyogram (EMG), or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs) or dynamic recurrent neural networks (DRNNs). Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy.
format Online
Article
Text
id pubmed-3261492
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-32614922012-01-23 From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation Cheron, G. Duvinage, M. De Saedeleer, C. Castermans, T. Bengoetxea, A. Petieau, M. Seetharaman, K. Hoellinger, T. Dan, B. Dutoit, T. Sylos Labini, F. Lacquaniti, F. Ivanenko, Y. Neural Plast Review Article Success in locomotor rehabilitation programs can be improved with the use of brain-computer interfaces (BCIs). Although a wealth of research has demonstrated that locomotion is largely controlled by spinal mechanisms, the brain is of utmost importance in monitoring locomotor patterns and therefore contains information regarding central pattern generation functioning. In addition, there is also a tight coordination between the upper and lower limbs, which can also be useful in controlling locomotion. The current paper critically investigates different approaches that are applicable to this field: the use of electroencephalogram (EEG), upper limb electromyogram (EMG), or a hybrid of the two neurophysiological signals to control assistive exoskeletons used in locomotion based on programmable central pattern generators (PCPGs) or dynamic recurrent neural networks (DRNNs). Plantar surface tactile stimulation devices combined with virtual reality may provide the sensation of walking while in a supine position for use of training brain signals generated during locomotion. These methods may exploit mechanisms of brain plasticity and assist in the neurorehabilitation of gait in a variety of clinical conditions, including stroke, spinal trauma, multiple sclerosis, and cerebral palsy. Hindawi Publishing Corporation 2012 2012-01-04 /pmc/articles/PMC3261492/ /pubmed/22272380 http://dx.doi.org/10.1155/2012/375148 Text en Copyright © 2012 G. Cheron et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Review Article
Cheron, G.
Duvinage, M.
De Saedeleer, C.
Castermans, T.
Bengoetxea, A.
Petieau, M.
Seetharaman, K.
Hoellinger, T.
Dan, B.
Dutoit, T.
Sylos Labini, F.
Lacquaniti, F.
Ivanenko, Y.
From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title_full From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title_fullStr From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title_full_unstemmed From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title_short From Spinal Central Pattern Generators to Cortical Network: Integrated BCI for Walking Rehabilitation
title_sort from spinal central pattern generators to cortical network: integrated bci for walking rehabilitation
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261492/
https://www.ncbi.nlm.nih.gov/pubmed/22272380
http://dx.doi.org/10.1155/2012/375148
work_keys_str_mv AT cherong fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT duvinagem fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT desaedeleerc fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT castermanst fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT bengoetxeaa fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT petieaum fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT seetharamank fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT hoellingert fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT danb fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT dutoitt fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT syloslabinif fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT lacquanitif fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation
AT ivanenkoy fromspinalcentralpatterngeneratorstocorticalnetworkintegratedbciforwalkingrehabilitation