Cargando…

Regulation of translocation polarity by helicase domain 1 in SF2B helicases

Structurally similar superfamily I (SF1) and II (SF2) helicases translocate on single-stranded DNA (ssDNA) with defined polarity either in the 5′–3′ or in the 3′–5′ direction. Both 5′–3′ and 3′–5′ translocating helicases contain the same motor core comprising two RecA-like folds. SF1 helicases of op...

Descripción completa

Detalles Bibliográficos
Autores principales: Pugh, Robert A, Wu, Colin G, Spies, Maria
Formato: Online Artículo Texto
Lenguaje:English
Publicado: European Molecular Biology Organization 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261565/
https://www.ncbi.nlm.nih.gov/pubmed/22081110
http://dx.doi.org/10.1038/emboj.2011.412
Descripción
Sumario:Structurally similar superfamily I (SF1) and II (SF2) helicases translocate on single-stranded DNA (ssDNA) with defined polarity either in the 5′–3′ or in the 3′–5′ direction. Both 5′–3′ and 3′–5′ translocating helicases contain the same motor core comprising two RecA-like folds. SF1 helicases of opposite polarity bind ssDNA with the same orientation, and translocate in opposite directions by employing a reverse sequence of the conformational changes within the motor domains. Here, using proteolytic DNA and mutational analysis, we have determined that SF2B helicases bind ssDNA with the same orientation as their 3′–5′ counterparts. Further, 5′–3′ translocation polarity requires conserved residues in HD1 and the FeS cluster containing domain. Finally, we propose the FeS cluster-containing domain also provides a wedge-like feature that is the point of duplex separation during unwinding.