Cargando…
Statistical Inference for Valued-Edge Networks: The Generalized Exponential Random Graph Model
Across the sciences, the statistical analysis of networks is central to the production of knowledge on relational phenomena. Because of their ability to model the structural generation of networks based on both endogenous and exogenous factors, exponential random graph models are a ubiquitous means...
Autores principales: | Desmarais, Bruce A., Cranmer, Skyler J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3261863/ https://www.ncbi.nlm.nih.gov/pubmed/22276151 http://dx.doi.org/10.1371/journal.pone.0030136 |
Ejemplares similares
-
Exponential Random Graph Modeling for Complex Brain Networks
por: Simpson, Sean L., et al.
Publicado: (2011) -
A Simulation Study Comparing Epidemic Dynamics on Exponential Random Graph and Edge-Triangle Configuration Type Contact Network Models
por: Rolls, David A., et al.
Publicado: (2015) -
Testing biological network motif significance with exponential random graph models
por: Stivala, Alex, et al.
Publicado: (2021) -
Analysis of the global trade network using exponential random graph models
por: Setayesh, Amin, et al.
Publicado: (2022) -
Statistical Modeling of the Default Mode Brain Network Reveals a Segregated Highway Structure
por: Stillman, Paul E., et al.
Publicado: (2017)