Cargando…

The amplifier effect: how Pin1 empowers mutant p53

Mutation of p53 occurs in 15 to 20% of all breast cancers, and with higher frequency in estrogen-receptor negative and high-grade tumors. Certain p53 mutations contribute to malignant transformation not only through loss of wild-type p53 but also through a gain of function of specific p53 mutations....

Descripción completa

Detalles Bibliográficos
Autores principales: Hu, Hai, Wulf, Gerburg M
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262197/
https://www.ncbi.nlm.nih.gov/pubmed/22017796
http://dx.doi.org/10.1186/bcr2941
Descripción
Sumario:Mutation of p53 occurs in 15 to 20% of all breast cancers, and with higher frequency in estrogen-receptor negative and high-grade tumors. Certain p53 mutations contribute to malignant transformation not only through loss of wild-type p53 but also through a gain of function of specific p53 mutations. How these hotspot mutations turn p53 from a tumor suppressor into an oncogene had until now remained incompletely understood. In an elegant paper published in the July 12 issue of Cancer Cell, Girardini and colleagues show how Pin1-mediated prolylisomerization, a regulatory mechanism intended by evolution to support p53's function as a guardian of the genome, can go haywire and accelerate malignant transformation when p53 carries a dominant-negative mutation.