Cargando…
In vivo Expansion of Naïve CD4(+)CD25(high) FOXP3(+) Regulatory T Cells in Patients with Colorectal Carcinoma after IL-2 Administration
Regulatory T cells (T(reg) cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3262821/ https://www.ncbi.nlm.nih.gov/pubmed/22276195 http://dx.doi.org/10.1371/journal.pone.0030422 |
Sumario: | Regulatory T cells (T(reg) cells) are increased in context of malignancies and their expansion can be correlated with higher disease burden and decreased survival. Initially, interleukin 2 (IL-2) has been used as T-cell growth factor in clinical vaccination trials. In murine models, however, a role of IL-2 in development, differentiation, homeostasis, and function of T(reg) cells was established. In IL-2 treated cancer patients a further T(reg)-cell expansion was described, yet, the mechanism of expansion is still elusive. Here we report that functional T(reg) cells of a naïve phenotype - as determined by CCR7 and CD45RA expression - are significantly expanded in colorectal cancer patients. Treatment of 15 UICC stage IV colorectal cancer patients with IL-2 in a phase I/II peptide vaccination trial further enlarges the already increased naïve T(reg)-cell pool. Higher frequencies of T-cell receptor excision circles in naïve T(reg) cells indicate IL-2 dependent thymic generation of naïve T(reg) cells as a mechanism leading to increased frequencies of T(reg) cells post IL-2 treatment in cancer patients. This finding could be confirmed in naïve murine T(reg) cells after IL-2 administration. These results point to a more complex regulation of T(reg) cells in context of IL-2 administration. Future strategies therefore might aim at combining IL-2 therapy with novel strategies to circumvent expansion and differentiation of naïve T(reg) cells. |
---|