Cargando…
Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death
BACKGROUND: Quercetin has been shown to induce apoptosis in a number of cancer cell lines, but a quercetin-loaded nanoliposomal formulation with enhanced antitumor activity in C6 glioma cells and its effect on cancer cell death has not been well studied. The aim of this study was to examine if querc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove Medical Press
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263417/ https://www.ncbi.nlm.nih.gov/pubmed/22275840 http://dx.doi.org/10.2147/IJN.S26935 |
_version_ | 1782221859846094848 |
---|---|
author | Wang, Gang Wang, Jun Jie Yang, Guang Yi Du, Shi Ming Zeng, Nan Li, Dong Sheng Li, Rui Ming Chen, Ji Yan Feng, Jin Bo Yuan, Shen Hao Ye, Fang |
author_facet | Wang, Gang Wang, Jun Jie Yang, Guang Yi Du, Shi Ming Zeng, Nan Li, Dong Sheng Li, Rui Ming Chen, Ji Yan Feng, Jin Bo Yuan, Shen Hao Ye, Fang |
author_sort | Wang, Gang |
collection | PubMed |
description | BACKGROUND: Quercetin has been shown to induce apoptosis in a number of cancer cell lines, but a quercetin-loaded nanoliposomal formulation with enhanced antitumor activity in C6 glioma cells and its effect on cancer cell death has not been well studied. The aim of this study was to examine if quercetin-loaded liposomes (QUE-NL) has enhanced cytotoxic effects and if such effects involve type III programmed cell death in C6 glioma cells. METHODS: C6 glioma cells were treated with QUE-NL and assayed for cell survival, apoptosis, and necrosis. Levels of reactive oxygen species production and loss of mitochondrial membrane potential (ΔΨm) were also determined by flow cytometry assay to assess the effects of QUE-NL. ATP levels and lactate dehydrogenase activity were measured, and Western blotting was used to assay cytochrome C release and caspase expression. RESULTS: QUE-NL induced type III (necrotic) programmed cell death in C6 glioma cells in a dose-dependent and time-dependent manner. High concentrations of QUE-NL induced cell necrosis, which is distinct from apoptosis and autophagy, whereas liposomes administered alone induced neither significant apoptosis nor necrosis in C6 glioma cells. QUE-NL-induced ΔΨm loss and cytochrome C release had no effect on caspase activation, but decreased ATP levels and increased lactate dehydrogenase activity indicated that QUE-NL stimulated necrotic cell death. CONCLUSION: C6 glioma cells treated with QUE-NL showed a cellular pattern associated with necrosis without apoptosis and was independent of caspase activity. Nonapoptotic cell death induced by high concentrations of QUE-NL for controlling caspase-independent type III programmed cell death may provide the basis for novel therapeutic approaches to overcome avoidance of apoptosis by malignant cells. |
format | Online Article Text |
id | pubmed-3263417 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Dove Medical Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-32634172012-01-24 Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death Wang, Gang Wang, Jun Jie Yang, Guang Yi Du, Shi Ming Zeng, Nan Li, Dong Sheng Li, Rui Ming Chen, Ji Yan Feng, Jin Bo Yuan, Shen Hao Ye, Fang Int J Nanomedicine Original Research BACKGROUND: Quercetin has been shown to induce apoptosis in a number of cancer cell lines, but a quercetin-loaded nanoliposomal formulation with enhanced antitumor activity in C6 glioma cells and its effect on cancer cell death has not been well studied. The aim of this study was to examine if quercetin-loaded liposomes (QUE-NL) has enhanced cytotoxic effects and if such effects involve type III programmed cell death in C6 glioma cells. METHODS: C6 glioma cells were treated with QUE-NL and assayed for cell survival, apoptosis, and necrosis. Levels of reactive oxygen species production and loss of mitochondrial membrane potential (ΔΨm) were also determined by flow cytometry assay to assess the effects of QUE-NL. ATP levels and lactate dehydrogenase activity were measured, and Western blotting was used to assay cytochrome C release and caspase expression. RESULTS: QUE-NL induced type III (necrotic) programmed cell death in C6 glioma cells in a dose-dependent and time-dependent manner. High concentrations of QUE-NL induced cell necrosis, which is distinct from apoptosis and autophagy, whereas liposomes administered alone induced neither significant apoptosis nor necrosis in C6 glioma cells. QUE-NL-induced ΔΨm loss and cytochrome C release had no effect on caspase activation, but decreased ATP levels and increased lactate dehydrogenase activity indicated that QUE-NL stimulated necrotic cell death. CONCLUSION: C6 glioma cells treated with QUE-NL showed a cellular pattern associated with necrosis without apoptosis and was independent of caspase activity. Nonapoptotic cell death induced by high concentrations of QUE-NL for controlling caspase-independent type III programmed cell death may provide the basis for novel therapeutic approaches to overcome avoidance of apoptosis by malignant cells. Dove Medical Press 2012 2012-01-16 /pmc/articles/PMC3263417/ /pubmed/22275840 http://dx.doi.org/10.2147/IJN.S26935 Text en © 2012 Wang et al, publisher and licensee Dove Medical Press Ltd. This is an Open Access article which permits unrestricted noncommercial use, provided the original work is properly cited. |
spellingShingle | Original Research Wang, Gang Wang, Jun Jie Yang, Guang Yi Du, Shi Ming Zeng, Nan Li, Dong Sheng Li, Rui Ming Chen, Ji Yan Feng, Jin Bo Yuan, Shen Hao Ye, Fang Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title | Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title_full | Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title_fullStr | Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title_full_unstemmed | Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title_short | Effects of quercetin nanoliposomes on C6 glioma cells through induction of type III programmed cell death |
title_sort | effects of quercetin nanoliposomes on c6 glioma cells through induction of type iii programmed cell death |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263417/ https://www.ncbi.nlm.nih.gov/pubmed/22275840 http://dx.doi.org/10.2147/IJN.S26935 |
work_keys_str_mv | AT wanggang effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT wangjunjie effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT yangguangyi effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT dushiming effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT zengnan effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT lidongsheng effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT liruiming effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT chenjiyan effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT fengjinbo effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT yuanshenhao effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath AT yefang effectsofquercetinnanoliposomesonc6gliomacellsthroughinductionoftypeiiiprogrammedcelldeath |