Cargando…
-selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts
Efficient delivery of stem cells to heart regions is still a major problem for cell therapy. Here, we report experiments aimed to improve migration of mouse and human cardiac mesoangioblasts to the damaged heart. Cardiac mesoangioblasts were induced to transmigrate through the endothelium by factors...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263491/ https://www.ncbi.nlm.nih.gov/pubmed/21869829 http://dx.doi.org/10.1038/cdd.2011.110 |
_version_ | 1782221873246896128 |
---|---|
author | Bernal, A San Martín, N Fernández, M Covarello, D Molla, F Soldo, A Latini, R Cossu, G Gálvez, B G |
author_facet | Bernal, A San Martín, N Fernández, M Covarello, D Molla, F Soldo, A Latini, R Cossu, G Gálvez, B G |
author_sort | Bernal, A |
collection | PubMed |
description | Efficient delivery of stem cells to heart regions is still a major problem for cell therapy. Here, we report experiments aimed to improve migration of mouse and human cardiac mesoangioblasts to the damaged heart. Cardiac mesoangioblasts were induced to transmigrate through the endothelium by factors released by cardiomyocytes or cytokines, among which stromal-derived factor 1 (SDF-1) was the most potent. Cardiac mesoangioblasts were also delivered into the left ventricular (LV) chamber of mice after coronary artery ligation (CAL), and their in vivo homing to the damaged heart was found to be quite modest. Pretreatment of cardiac mesoangioblasts with SDF-1 or transient expression of -selectin induced a two- to three-fold increase in their transmigration and homing to the damaged heart. Therefore, combined pretreatment with SDF-1 and -selectin generated modified cardiac mesoangioblasts, 50% of which, after injection into the LV chamber of mice early after CAL, home directly to the damaged free wall of the heart. Finally, modified mouse cardiac mesoangioblasts, injected into the LV chamber regenerate a larger surface of the ventricle in long-term experiments in comparison with their control counterparts. This study defines the requirements for efficient homing of cardiac mesoangioblasts to the damaged heart and offers a new potent tool to optimize efficiency of future cell therapy protocols for cardiovascular diseases. |
format | Online Article Text |
id | pubmed-3263491 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-32634912012-02-01 -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts Bernal, A San Martín, N Fernández, M Covarello, D Molla, F Soldo, A Latini, R Cossu, G Gálvez, B G Cell Death Differ Original Paper Efficient delivery of stem cells to heart regions is still a major problem for cell therapy. Here, we report experiments aimed to improve migration of mouse and human cardiac mesoangioblasts to the damaged heart. Cardiac mesoangioblasts were induced to transmigrate through the endothelium by factors released by cardiomyocytes or cytokines, among which stromal-derived factor 1 (SDF-1) was the most potent. Cardiac mesoangioblasts were also delivered into the left ventricular (LV) chamber of mice after coronary artery ligation (CAL), and their in vivo homing to the damaged heart was found to be quite modest. Pretreatment of cardiac mesoangioblasts with SDF-1 or transient expression of -selectin induced a two- to three-fold increase in their transmigration and homing to the damaged heart. Therefore, combined pretreatment with SDF-1 and -selectin generated modified cardiac mesoangioblasts, 50% of which, after injection into the LV chamber of mice early after CAL, home directly to the damaged free wall of the heart. Finally, modified mouse cardiac mesoangioblasts, injected into the LV chamber regenerate a larger surface of the ventricle in long-term experiments in comparison with their control counterparts. This study defines the requirements for efficient homing of cardiac mesoangioblasts to the damaged heart and offers a new potent tool to optimize efficiency of future cell therapy protocols for cardiovascular diseases. Nature Publishing Group 2012-02 2011-08-26 /pmc/articles/PMC3263491/ /pubmed/21869829 http://dx.doi.org/10.1038/cdd.2011.110 Text en Copyright © 2012 Macmillan Publishers Limited http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under the Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Original Paper Bernal, A San Martín, N Fernández, M Covarello, D Molla, F Soldo, A Latini, R Cossu, G Gálvez, B G -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title | -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title_full | -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title_fullStr | -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title_full_unstemmed | -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title_short | -selectin and SDF-1 enhance the migration of mouse and human cardiac mesoangioblasts |
title_sort | -selectin and sdf-1 enhance the migration of mouse and human cardiac mesoangioblasts |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263491/ https://www.ncbi.nlm.nih.gov/pubmed/21869829 http://dx.doi.org/10.1038/cdd.2011.110 |
work_keys_str_mv | AT bernala selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT sanmartinn selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT fernandezm selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT covarellod selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT mollaf selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT soldoa selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT latinir selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT cossug selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts AT galvezbg selectinandsdf1enhancethemigrationofmouseandhumancardiacmesoangioblasts |