Cargando…

Synthetic mimetics of protein secondary structure domains

Proteins modulate the majority of all biological functions and are primarily composed of highly organized secondary structural elements such as helices, turns and sheets. Many of these functions are affected by a small number of key protein–protein contacts, often involving one or more of these well...

Descripción completa

Detalles Bibliográficos
Autores principales: Ross, Nathan T., Katt, William P., Hamilton, Andrew D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society Publishing 2010
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3263801/
https://www.ncbi.nlm.nih.gov/pubmed/20123744
http://dx.doi.org/10.1098/rsta.2009.0210
Descripción
Sumario:Proteins modulate the majority of all biological functions and are primarily composed of highly organized secondary structural elements such as helices, turns and sheets. Many of these functions are affected by a small number of key protein–protein contacts, often involving one or more of these well-defined structural elements. Given the ubiquitous nature of these protein recognition domains, their mimicry by peptidic and non-peptidic scaffolds has become a major focus of contemporary research. This review examines several key advances in secondary structure mimicry over the past several years, particularly focusing upon scaffolds that show not only promising projection of functional groups, but also a proven effect in biological systems.