Cargando…
Computational toxicology using the OpenTox application programming interface and Bioclipse
BACKGROUND: Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on bei...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264531/ https://www.ncbi.nlm.nih.gov/pubmed/22075173 http://dx.doi.org/10.1186/1756-0500-4-487 |
_version_ | 1782221979995078656 |
---|---|
author | Willighagen, Egon L Jeliazkova, Nina Hardy, Barry Grafström, Roland C Spjuth, Ola |
author_facet | Willighagen, Egon L Jeliazkova, Nina Hardy, Barry Grafström, Roland C Spjuth, Ola |
author_sort | Willighagen, Egon L |
collection | PubMed |
description | BACKGROUND: Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. FINDINGS: This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. CONCLUSIONS: A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. |
format | Online Article Text |
id | pubmed-3264531 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32645312012-01-24 Computational toxicology using the OpenTox application programming interface and Bioclipse Willighagen, Egon L Jeliazkova, Nina Hardy, Barry Grafström, Roland C Spjuth, Ola BMC Res Notes Short Report BACKGROUND: Toxicity is a complex phenomenon involving the potential adverse effect on a range of biological functions. Predicting toxicity involves using a combination of experimental data (endpoints) and computational methods to generate a set of predictive models. Such models rely strongly on being able to integrate information from many sources. The required integration of biological and chemical information sources requires, however, a common language to express our knowledge ontologically, and interoperating services to build reliable predictive toxicology applications. FINDINGS: This article describes progress in extending the integrative bio- and cheminformatics platform Bioclipse to interoperate with OpenTox, a semantic web framework which supports open data exchange and toxicology model building. The Bioclipse workbench environment enables functionality from OpenTox web services and easy access to OpenTox resources for evaluating toxicity properties of query molecules. Relevant cases and interfaces based on ten neurotoxins are described to demonstrate the capabilities provided to the user. The integration takes advantage of semantic web technologies, thereby providing an open and simplifying communication standard. Additionally, the use of ontologies ensures proper interoperation and reliable integration of toxicity information from both experimental and computational sources. CONCLUSIONS: A novel computational toxicity assessment platform was generated from integration of two open science platforms related to toxicology: Bioclipse, that combines a rich scriptable and graphical workbench environment for integration of diverse sets of information sources, and OpenTox, a platform for interoperable toxicology data and computational services. The combination provides improved reliability and operability for handling large data sets by the use of the Open Standards from the OpenTox Application Programming Interface. This enables simultaneous access to a variety of distributed predictive toxicology databases, and algorithm and model resources, taking advantage of the Bioclipse workbench handling the technical layers. BioMed Central 2011-11-10 /pmc/articles/PMC3264531/ /pubmed/22075173 http://dx.doi.org/10.1186/1756-0500-4-487 Text en Copyright ©2011 Willighagen et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Willighagen, Egon L Jeliazkova, Nina Hardy, Barry Grafström, Roland C Spjuth, Ola Computational toxicology using the OpenTox application programming interface and Bioclipse |
title | Computational toxicology using the OpenTox application programming interface and Bioclipse |
title_full | Computational toxicology using the OpenTox application programming interface and Bioclipse |
title_fullStr | Computational toxicology using the OpenTox application programming interface and Bioclipse |
title_full_unstemmed | Computational toxicology using the OpenTox application programming interface and Bioclipse |
title_short | Computational toxicology using the OpenTox application programming interface and Bioclipse |
title_sort | computational toxicology using the opentox application programming interface and bioclipse |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3264531/ https://www.ncbi.nlm.nih.gov/pubmed/22075173 http://dx.doi.org/10.1186/1756-0500-4-487 |
work_keys_str_mv | AT willighagenegonl computationaltoxicologyusingtheopentoxapplicationprogramminginterfaceandbioclipse AT jeliazkovanina computationaltoxicologyusingtheopentoxapplicationprogramminginterfaceandbioclipse AT hardybarry computationaltoxicologyusingtheopentoxapplicationprogramminginterfaceandbioclipse AT grafstromrolandc computationaltoxicologyusingtheopentoxapplicationprogramminginterfaceandbioclipse AT spjuthola computationaltoxicologyusingtheopentoxapplicationprogramminginterfaceandbioclipse |