Cargando…
UCP2 Inhibits ROS-Mediated Apoptosis in A549 under Hypoxic Conditions
The Crosstalk between a tumor and its hypoxic microenvironment has become increasingly important. However, the exact role of UCP2 function in cancer cells under hypoxia remains unknown. In this study, UCP2 showed anti-apoptotic properties in A549 cells under hypoxic conditions. Over-expression of UC...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3265501/ https://www.ncbi.nlm.nih.gov/pubmed/22292025 http://dx.doi.org/10.1371/journal.pone.0030714 |
Sumario: | The Crosstalk between a tumor and its hypoxic microenvironment has become increasingly important. However, the exact role of UCP2 function in cancer cells under hypoxia remains unknown. In this study, UCP2 showed anti-apoptotic properties in A549 cells under hypoxic conditions. Over-expression of UCP2 in A549 cells inhibited reactive oxygen species (ROS) accumulation (P<0.001) and apoptosis (P<0.001) compared to the controls when the cells were exposed to hypoxia. Moreover, over-expression of UCP2 inhibited the release of cytochrome C and reduced the activation of caspase-9. Conversely, suppression of UCP2 resulted in the ROS generation (P = 0.006), the induction of apoptosis (P<0.001), and the release of cytochrome C from mitochondria to the cytosolic fraction, thus activating caspase-9. These data suggest that over-expression of UCP2 has anti-apoptotic properties by inhibiting ROS-mediated apoptosis in A549 cells under hypoxic conditions. |
---|