Cargando…

Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro

INTRODUCTION: Despite the excellent anti-inflammatory and immunosuppressive action of glucocorticoids (GCs), their use for the treatment of inflammatory bowel disease (IBD) still carries significant risks in terms of frequently occurring severe side effects, such as the impairment of intestinal tiss...

Descripción completa

Detalles Bibliográficos
Autores principales: Reuter, Kerstin C., Loitsch, Stefan M., Dignass, Axel U., Steinhilber, Dieter, Stein, Jürgen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266253/
https://www.ncbi.nlm.nih.gov/pubmed/22295067
http://dx.doi.org/10.1371/journal.pone.0029756
_version_ 1782222156018483200
author Reuter, Kerstin C.
Loitsch, Stefan M.
Dignass, Axel U.
Steinhilber, Dieter
Stein, Jürgen
author_facet Reuter, Kerstin C.
Loitsch, Stefan M.
Dignass, Axel U.
Steinhilber, Dieter
Stein, Jürgen
author_sort Reuter, Kerstin C.
collection PubMed
description INTRODUCTION: Despite the excellent anti-inflammatory and immunosuppressive action of glucocorticoids (GCs), their use for the treatment of inflammatory bowel disease (IBD) still carries significant risks in terms of frequently occurring severe side effects, such as the impairment of intestinal tissue repair. The recently-introduced selective glucocorticoid receptor (GR) agonists (SEGRAs) offer anti-inflammatory action comparable to that of common GCs, but with a reduced side effect profile. METHODS: The in vitro effects of the non-steroidal SEGRAs Compound A (CpdA) and ZK216348, were investigated in intestinal epithelial cells and compared to those of Dexamethasone (Dex). GR translocation was shown by immunfluorescence and Western blot analysis. Trans-repressive effects were studied by means of NF-κB/p65 activity and IL-8 levels, trans-activation potency by reporter gene assay. Flow cytometry was used to assess apoptosis of cells exposed to SEGRAs. The effects on IEC-6 and HaCaT cell restitution were determined using an in vitro wound healing model, cell proliferation by BrdU assay. In addition, influences on the TGF-β- or EGF/ERK1/2/MAPK-pathway were evaluated by reporter gene assay, Western blot and qPCR analysis. RESULTS: Dex, CpdA and ZK216348 were found to be functional GR agonists. In terms of trans-repression, CpdA and ZK216348 effectively inhibited NF-κB activity and IL-8 secretion, but showed less trans-activation potency. Furthermore, unlike SEGRAs, Dex caused a dose-dependent inhibition of cell restitution with no effect on cell proliferation. These differences in epithelial restitution were TGF-β-independent but Dex inhibited the EGF/ERK1/2/MAPK-pathway important for intestinal epithelial wound healing by induction of MKP-1 and Annexin-1 which was not affected by CpdA or ZK216348. CONCLUSION: Collectively, our results indicate that, while their anti-inflammatory activity is comparable to Dex, SEGRAs show fewer side effects with respect to wound healing. The fact that SEGRAs did not have a similar effect on cell restitution might be due to a different modulation of EGF/ERK1/2 MAPK signalling.
format Online
Article
Text
id pubmed-3266253
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32662532012-01-31 Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro Reuter, Kerstin C. Loitsch, Stefan M. Dignass, Axel U. Steinhilber, Dieter Stein, Jürgen PLoS One Research Article INTRODUCTION: Despite the excellent anti-inflammatory and immunosuppressive action of glucocorticoids (GCs), their use for the treatment of inflammatory bowel disease (IBD) still carries significant risks in terms of frequently occurring severe side effects, such as the impairment of intestinal tissue repair. The recently-introduced selective glucocorticoid receptor (GR) agonists (SEGRAs) offer anti-inflammatory action comparable to that of common GCs, but with a reduced side effect profile. METHODS: The in vitro effects of the non-steroidal SEGRAs Compound A (CpdA) and ZK216348, were investigated in intestinal epithelial cells and compared to those of Dexamethasone (Dex). GR translocation was shown by immunfluorescence and Western blot analysis. Trans-repressive effects were studied by means of NF-κB/p65 activity and IL-8 levels, trans-activation potency by reporter gene assay. Flow cytometry was used to assess apoptosis of cells exposed to SEGRAs. The effects on IEC-6 and HaCaT cell restitution were determined using an in vitro wound healing model, cell proliferation by BrdU assay. In addition, influences on the TGF-β- or EGF/ERK1/2/MAPK-pathway were evaluated by reporter gene assay, Western blot and qPCR analysis. RESULTS: Dex, CpdA and ZK216348 were found to be functional GR agonists. In terms of trans-repression, CpdA and ZK216348 effectively inhibited NF-κB activity and IL-8 secretion, but showed less trans-activation potency. Furthermore, unlike SEGRAs, Dex caused a dose-dependent inhibition of cell restitution with no effect on cell proliferation. These differences in epithelial restitution were TGF-β-independent but Dex inhibited the EGF/ERK1/2/MAPK-pathway important for intestinal epithelial wound healing by induction of MKP-1 and Annexin-1 which was not affected by CpdA or ZK216348. CONCLUSION: Collectively, our results indicate that, while their anti-inflammatory activity is comparable to Dex, SEGRAs show fewer side effects with respect to wound healing. The fact that SEGRAs did not have a similar effect on cell restitution might be due to a different modulation of EGF/ERK1/2 MAPK signalling. Public Library of Science 2012-01-25 /pmc/articles/PMC3266253/ /pubmed/22295067 http://dx.doi.org/10.1371/journal.pone.0029756 Text en Reuter et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Reuter, Kerstin C.
Loitsch, Stefan M.
Dignass, Axel U.
Steinhilber, Dieter
Stein, Jürgen
Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title_full Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title_fullStr Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title_full_unstemmed Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title_short Selective Non-Steroidal Glucocorticoid Receptor Agonists Attenuate Inflammation but Do Not Impair Intestinal Epithelial Cell Restitution In Vitro
title_sort selective non-steroidal glucocorticoid receptor agonists attenuate inflammation but do not impair intestinal epithelial cell restitution in vitro
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266253/
https://www.ncbi.nlm.nih.gov/pubmed/22295067
http://dx.doi.org/10.1371/journal.pone.0029756
work_keys_str_mv AT reuterkerstinc selectivenonsteroidalglucocorticoidreceptoragonistsattenuateinflammationbutdonotimpairintestinalepithelialcellrestitutioninvitro
AT loitschstefanm selectivenonsteroidalglucocorticoidreceptoragonistsattenuateinflammationbutdonotimpairintestinalepithelialcellrestitutioninvitro
AT dignassaxelu selectivenonsteroidalglucocorticoidreceptoragonistsattenuateinflammationbutdonotimpairintestinalepithelialcellrestitutioninvitro
AT steinhilberdieter selectivenonsteroidalglucocorticoidreceptoragonistsattenuateinflammationbutdonotimpairintestinalepithelialcellrestitutioninvitro
AT steinjurgen selectivenonsteroidalglucocorticoidreceptoragonistsattenuateinflammationbutdonotimpairintestinalepithelialcellrestitutioninvitro