Cargando…
Associations between Organochlorine Pesticides and Vitamin D Deficiency in the U.S. Population
BACKGROUND: Recently low dose organochlorine (OC) pesticides have been strongly linked to various chronic diseases including diabetes and cardiovascular diseases. Both field and animal studies have suggested a possibility that persistent lipophilic chemicals like OC pesticides can cause vitamin D de...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266254/ https://www.ncbi.nlm.nih.gov/pubmed/22295072 http://dx.doi.org/10.1371/journal.pone.0030093 |
Sumario: | BACKGROUND: Recently low dose organochlorine (OC) pesticides have been strongly linked to various chronic diseases including diabetes and cardiovascular diseases. Both field and animal studies have suggested a possibility that persistent lipophilic chemicals like OC pesticides can cause vitamin D deficiency, but there have been no human studies of exposure to any chemical as a possible cause of vitamin D deficiency. This study was performed to examine if serum concentrations of OC pesticides were associated with serum concentrations of 25-hydroxyvitamin D (25(OH)D) in the U.S. general population. METHODOLOGY/PRINCIPAL FINDINGS: Cross-sectional associations of serum OC pesticides with serum 25(OH)D were investigated in 1,275 subjects aged ≥20 in the National Health and Nutrition Examination Survey(NHANES), 2003–2004. We selected 7 OC pesticides detectable in ≥80% of participants. Among the 7 OC pesticides, p,p′-DDT (β = −0.022, P<0.01), p,p′-DDE (β = −0.018, P = 0.04), and β-hexachlorocyclohexane (β = −0.022, P = 0.02) showed significant inverse associations with serum 25(OH)D levels. When study subjects were stratified by age, race, and the presence of various chronic diseases, p,p′-DDT showed consistent inverse associations in all subgroups, although stronger associations tended to be observed among subjects with old age, white race, or chronic diseases. CONCLUSION/SIGNIFICANCE: The current study suggests that the background exposure to some OC pesticides leads to vitamin D deficiency in human. Considering the importance of vitamin D deficiency in the development of chronic diseases, chemical exposure as a possible cause of vitamin D deficiency should be evaluated in prospective and experimental studies. |
---|