Cargando…

A WKYMVm-Containing Combination Elicits Potent Anti-Tumor Activity in Heterotopic Cancer Animal Model

The development of efficient anti-cancer therapy has been a topic of intense interest for several decades. Combined administration of certain molecules and immune cells has been shown to be an effective form of anti-cancer therapy. Here, we examined the effects of administering an immune stimulating...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Sang Doo, Lee, Ha Young, Shim, Jae Woong, Kim, Hak Jung, Baek, Suk-Hwan, Zabel, Brian A., Bae, Yoe-Sik
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266298/
https://www.ncbi.nlm.nih.gov/pubmed/22295090
http://dx.doi.org/10.1371/journal.pone.0030522
Descripción
Sumario:The development of efficient anti-cancer therapy has been a topic of intense interest for several decades. Combined administration of certain molecules and immune cells has been shown to be an effective form of anti-cancer therapy. Here, we examined the effects of administering an immune stimulating peptide (WKYMVm), 5-fluoro-uracil (5-FU), and mature dendritic cells (mDCs) against heterotopic cancer animal model. Administration of the triple combination strongly reduced tumor volume in CT-26-inoculated heterotopic cancer animal model. The induced anti-tumor activity was well correlated with FAS expression, caspase-3 activation, and cancer cell apoptosis. The triple combination treatment caused recruitment of CD8 T lymphocytes and natural killer (NK) cells into the tumor. The production of two cytokines, IFN-γ and IL-12, were strongly stimulated by administration of the triple combination. Depletion of CD8 T lymphocytes or NK cells by administration of anti-CD8 or anti-asialoGM1 antibody inhibited the anti-tumor activity and cytokine production of the triple combination. The triple combination strongly inhibited metastasis of colon cancer cells in a heterotopic cancer animal model as well as in a metastatic cancer animal model, and enhanced the survival rate of the mice model. Adoptive transfer of CD8 T lymphocytes and NK cells further increased the survival rate. Taken together, we suggest that the use of triple combination therapy of WKYMVm, 5-FU, and mDCs may have implications in solid tumor and metastasis treatment.