Cargando…

FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents

Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific pr...

Descripción completa

Detalles Bibliográficos
Autores principales: Mu, James, Pinkstaff, Jason, Li, Zhihua, Skidmore, Lillian, Li, Nina, Myler, Heather, Dallas-Yang, Qing, Putnam, Anna-Maria, Yao, Jun, Bussell, Stuart, Wu, Margaret, Norman, Thea C., Rodriguez, Carlos G., Kimmel, Bruce, Metzger, Joseph M., Manibusan, Anthony, Lee, Darin, Zaller, Dennis M., Zhang, Bei B., DiMarchi, Richard D., Berger, Joel P., Axelrod, Douglas W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Diabetes Association 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266413/
https://www.ncbi.nlm.nih.gov/pubmed/22210323
http://dx.doi.org/10.2337/db11-0838
_version_ 1782222177351761920
author Mu, James
Pinkstaff, Jason
Li, Zhihua
Skidmore, Lillian
Li, Nina
Myler, Heather
Dallas-Yang, Qing
Putnam, Anna-Maria
Yao, Jun
Bussell, Stuart
Wu, Margaret
Norman, Thea C.
Rodriguez, Carlos G.
Kimmel, Bruce
Metzger, Joseph M.
Manibusan, Anthony
Lee, Darin
Zaller, Dennis M.
Zhang, Bei B.
DiMarchi, Richard D.
Berger, Joel P.
Axelrod, Douglas W.
author_facet Mu, James
Pinkstaff, Jason
Li, Zhihua
Skidmore, Lillian
Li, Nina
Myler, Heather
Dallas-Yang, Qing
Putnam, Anna-Maria
Yao, Jun
Bussell, Stuart
Wu, Margaret
Norman, Thea C.
Rodriguez, Carlos G.
Kimmel, Bruce
Metzger, Joseph M.
Manibusan, Anthony
Lee, Darin
Zaller, Dennis M.
Zhang, Bei B.
DiMarchi, Richard D.
Berger, Joel P.
Axelrod, Douglas W.
author_sort Mu, James
collection PubMed
description Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific protein PEGylation site, chemical conjugation is inherently heterogeneous and commonly leads to dramatic loss in bioactivity. This work illustrates a novel means of specific PEGylation, producing FGF21 analogs with high specific activity and salutary biological activities. Using homology modeling and structure-based design, specific sites were chosen in human FGF21 for site-specific PEGylation to ensure that receptor binding regions were preserved. The in vitro activity of the PEGylated FGF21 ana-logs corresponded with the site of PEG placement within the binding model. Site-specific PEGylated analogs demonstrated dramatically increased circulating half-life and enhanced efficacy in db/db mice. Twice-weekly dosing of an optimal FGF21 analog reduced blood glucose, plasma lipids, liver triglycerides, and plasma glucagon and enhanced pancreatic insulin content, islet number, and glucose-dependent insulin secretion. Restoration of insulin sensitivity was demonstrated by the enhanced ability of insulin to induce Akt/protein kinase B phosphorylation in liver, muscle, and adipose tissues. PEGylation of human FGF21 at a specific and preferred site confers superior metabolic pharmacology.
format Online
Article
Text
id pubmed-3266413
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher American Diabetes Association
record_format MEDLINE/PubMed
spelling pubmed-32664132013-02-01 FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents Mu, James Pinkstaff, Jason Li, Zhihua Skidmore, Lillian Li, Nina Myler, Heather Dallas-Yang, Qing Putnam, Anna-Maria Yao, Jun Bussell, Stuart Wu, Margaret Norman, Thea C. Rodriguez, Carlos G. Kimmel, Bruce Metzger, Joseph M. Manibusan, Anthony Lee, Darin Zaller, Dennis M. Zhang, Bei B. DiMarchi, Richard D. Berger, Joel P. Axelrod, Douglas W. Diabetes Pharmacology and Therapeutics Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific protein PEGylation site, chemical conjugation is inherently heterogeneous and commonly leads to dramatic loss in bioactivity. This work illustrates a novel means of specific PEGylation, producing FGF21 analogs with high specific activity and salutary biological activities. Using homology modeling and structure-based design, specific sites were chosen in human FGF21 for site-specific PEGylation to ensure that receptor binding regions were preserved. The in vitro activity of the PEGylated FGF21 ana-logs corresponded with the site of PEG placement within the binding model. Site-specific PEGylated analogs demonstrated dramatically increased circulating half-life and enhanced efficacy in db/db mice. Twice-weekly dosing of an optimal FGF21 analog reduced blood glucose, plasma lipids, liver triglycerides, and plasma glucagon and enhanced pancreatic insulin content, islet number, and glucose-dependent insulin secretion. Restoration of insulin sensitivity was demonstrated by the enhanced ability of insulin to induce Akt/protein kinase B phosphorylation in liver, muscle, and adipose tissues. PEGylation of human FGF21 at a specific and preferred site confers superior metabolic pharmacology. American Diabetes Association 2012-02 2012-01-17 /pmc/articles/PMC3266413/ /pubmed/22210323 http://dx.doi.org/10.2337/db11-0838 Text en © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.
spellingShingle Pharmacology and Therapeutics
Mu, James
Pinkstaff, Jason
Li, Zhihua
Skidmore, Lillian
Li, Nina
Myler, Heather
Dallas-Yang, Qing
Putnam, Anna-Maria
Yao, Jun
Bussell, Stuart
Wu, Margaret
Norman, Thea C.
Rodriguez, Carlos G.
Kimmel, Bruce
Metzger, Joseph M.
Manibusan, Anthony
Lee, Darin
Zaller, Dennis M.
Zhang, Bei B.
DiMarchi, Richard D.
Berger, Joel P.
Axelrod, Douglas W.
FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title_full FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title_fullStr FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title_full_unstemmed FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title_short FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
title_sort fgf21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents
topic Pharmacology and Therapeutics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266413/
https://www.ncbi.nlm.nih.gov/pubmed/22210323
http://dx.doi.org/10.2337/db11-0838
work_keys_str_mv AT mujames fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT pinkstaffjason fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT lizhihua fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT skidmorelillian fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT linina fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT mylerheather fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT dallasyangqing fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT putnamannamaria fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT yaojun fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT bussellstuart fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT wumargaret fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT normantheac fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT rodriguezcarlosg fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT kimmelbruce fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT metzgerjosephm fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT manibusananthony fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT leedarin fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT zallerdennism fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT zhangbeib fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT dimarchirichardd fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT bergerjoelp fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents
AT axelroddouglasw fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents