Cargando…
FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents
Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific pr...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266413/ https://www.ncbi.nlm.nih.gov/pubmed/22210323 http://dx.doi.org/10.2337/db11-0838 |
_version_ | 1782222177351761920 |
---|---|
author | Mu, James Pinkstaff, Jason Li, Zhihua Skidmore, Lillian Li, Nina Myler, Heather Dallas-Yang, Qing Putnam, Anna-Maria Yao, Jun Bussell, Stuart Wu, Margaret Norman, Thea C. Rodriguez, Carlos G. Kimmel, Bruce Metzger, Joseph M. Manibusan, Anthony Lee, Darin Zaller, Dennis M. Zhang, Bei B. DiMarchi, Richard D. Berger, Joel P. Axelrod, Douglas W. |
author_facet | Mu, James Pinkstaff, Jason Li, Zhihua Skidmore, Lillian Li, Nina Myler, Heather Dallas-Yang, Qing Putnam, Anna-Maria Yao, Jun Bussell, Stuart Wu, Margaret Norman, Thea C. Rodriguez, Carlos G. Kimmel, Bruce Metzger, Joseph M. Manibusan, Anthony Lee, Darin Zaller, Dennis M. Zhang, Bei B. DiMarchi, Richard D. Berger, Joel P. Axelrod, Douglas W. |
author_sort | Mu, James |
collection | PubMed |
description | Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific protein PEGylation site, chemical conjugation is inherently heterogeneous and commonly leads to dramatic loss in bioactivity. This work illustrates a novel means of specific PEGylation, producing FGF21 analogs with high specific activity and salutary biological activities. Using homology modeling and structure-based design, specific sites were chosen in human FGF21 for site-specific PEGylation to ensure that receptor binding regions were preserved. The in vitro activity of the PEGylated FGF21 ana-logs corresponded with the site of PEG placement within the binding model. Site-specific PEGylated analogs demonstrated dramatically increased circulating half-life and enhanced efficacy in db/db mice. Twice-weekly dosing of an optimal FGF21 analog reduced blood glucose, plasma lipids, liver triglycerides, and plasma glucagon and enhanced pancreatic insulin content, islet number, and glucose-dependent insulin secretion. Restoration of insulin sensitivity was demonstrated by the enhanced ability of insulin to induce Akt/protein kinase B phosphorylation in liver, muscle, and adipose tissues. PEGylation of human FGF21 at a specific and preferred site confers superior metabolic pharmacology. |
format | Online Article Text |
id | pubmed-3266413 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-32664132013-02-01 FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents Mu, James Pinkstaff, Jason Li, Zhihua Skidmore, Lillian Li, Nina Myler, Heather Dallas-Yang, Qing Putnam, Anna-Maria Yao, Jun Bussell, Stuart Wu, Margaret Norman, Thea C. Rodriguez, Carlos G. Kimmel, Bruce Metzger, Joseph M. Manibusan, Anthony Lee, Darin Zaller, Dennis M. Zhang, Bei B. DiMarchi, Richard D. Berger, Joel P. Axelrod, Douglas W. Diabetes Pharmacology and Therapeutics Fibroblast growth factor 21 (FGF21) mitigates many of the pathogenic features of type 2 diabetes, despite a short circulating half-life. PEGylation is a proven approach to prolonging the duration of action while enhancing biophysical solubility and stability. However, in the absence of a specific protein PEGylation site, chemical conjugation is inherently heterogeneous and commonly leads to dramatic loss in bioactivity. This work illustrates a novel means of specific PEGylation, producing FGF21 analogs with high specific activity and salutary biological activities. Using homology modeling and structure-based design, specific sites were chosen in human FGF21 for site-specific PEGylation to ensure that receptor binding regions were preserved. The in vitro activity of the PEGylated FGF21 ana-logs corresponded with the site of PEG placement within the binding model. Site-specific PEGylated analogs demonstrated dramatically increased circulating half-life and enhanced efficacy in db/db mice. Twice-weekly dosing of an optimal FGF21 analog reduced blood glucose, plasma lipids, liver triglycerides, and plasma glucagon and enhanced pancreatic insulin content, islet number, and glucose-dependent insulin secretion. Restoration of insulin sensitivity was demonstrated by the enhanced ability of insulin to induce Akt/protein kinase B phosphorylation in liver, muscle, and adipose tissues. PEGylation of human FGF21 at a specific and preferred site confers superior metabolic pharmacology. American Diabetes Association 2012-02 2012-01-17 /pmc/articles/PMC3266413/ /pubmed/22210323 http://dx.doi.org/10.2337/db11-0838 Text en © 2012 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details. |
spellingShingle | Pharmacology and Therapeutics Mu, James Pinkstaff, Jason Li, Zhihua Skidmore, Lillian Li, Nina Myler, Heather Dallas-Yang, Qing Putnam, Anna-Maria Yao, Jun Bussell, Stuart Wu, Margaret Norman, Thea C. Rodriguez, Carlos G. Kimmel, Bruce Metzger, Joseph M. Manibusan, Anthony Lee, Darin Zaller, Dennis M. Zhang, Bei B. DiMarchi, Richard D. Berger, Joel P. Axelrod, Douglas W. FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title | FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title_full | FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title_fullStr | FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title_full_unstemmed | FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title_short | FGF21 Analogs of Sustained Action Enabled by Orthogonal Biosynthesis Demonstrate Enhanced Antidiabetic Pharmacology in Rodents |
title_sort | fgf21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents |
topic | Pharmacology and Therapeutics |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3266413/ https://www.ncbi.nlm.nih.gov/pubmed/22210323 http://dx.doi.org/10.2337/db11-0838 |
work_keys_str_mv | AT mujames fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT pinkstaffjason fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT lizhihua fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT skidmorelillian fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT linina fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT mylerheather fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT dallasyangqing fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT putnamannamaria fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT yaojun fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT bussellstuart fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT wumargaret fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT normantheac fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT rodriguezcarlosg fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT kimmelbruce fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT metzgerjosephm fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT manibusananthony fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT leedarin fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT zallerdennism fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT zhangbeib fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT dimarchirichardd fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT bergerjoelp fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents AT axelroddouglasw fgf21analogsofsustainedactionenabledbyorthogonalbiosynthesisdemonstrateenhancedantidiabeticpharmacologyinrodents |