Cargando…
Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues
In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science Ltd
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267017/ https://www.ncbi.nlm.nih.gov/pubmed/22137339 http://dx.doi.org/10.1016/j.bmcl.2011.11.017 |
_version_ | 1782222233230376960 |
---|---|
author | Joce, Catherine White, Rebecca Stockley, Peter G. Warriner, Stuart Turnbull, W. Bruce Nelson, Adam |
author_facet | Joce, Catherine White, Rebecca Stockley, Peter G. Warriner, Stuart Turnbull, W. Bruce Nelson, Adam |
author_sort | Joce, Catherine |
collection | PubMed |
description | In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme inhibitors. To further our understanding of linker design, a series of novel bivalent S-adenosylmethionine (SAM) analogues were designed with the aim of interacting with the MetJ dimer in a bivalent sense (1:1 ligand/MetJ dimer). A range of ligands was synthesised and analyzed for ability to promote binding of the Escherichia coli methionine repressor, MetJ, to its operator DNA. Binding of bivalent SAM analogues to the MetJ homodimer in the presence of operator DNA was evaluated by fluorescence anisotropy and the effect of linker length and structure was investigated. The most effective bivalent ligand identified had a flexible linker, and promoted the DNA–protein interaction at 21-times lower concentration than the corresponding monovalent control compound. |
format | Online Article Text |
id | pubmed-3267017 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Elsevier Science Ltd |
record_format | MEDLINE/PubMed |
spelling | pubmed-32670172012-01-30 Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues Joce, Catherine White, Rebecca Stockley, Peter G. Warriner, Stuart Turnbull, W. Bruce Nelson, Adam Bioorg Med Chem Lett Article In optimal cases, bivalent ligands can bind with exceptionally high affinity to their protein targets. However, designing optimised linkers, that orient the two binding groups perfectly, is challenging, and yet crucial in both fragment-based ligand design and in the discovery of bisubstrate enzyme inhibitors. To further our understanding of linker design, a series of novel bivalent S-adenosylmethionine (SAM) analogues were designed with the aim of interacting with the MetJ dimer in a bivalent sense (1:1 ligand/MetJ dimer). A range of ligands was synthesised and analyzed for ability to promote binding of the Escherichia coli methionine repressor, MetJ, to its operator DNA. Binding of bivalent SAM analogues to the MetJ homodimer in the presence of operator DNA was evaluated by fluorescence anisotropy and the effect of linker length and structure was investigated. The most effective bivalent ligand identified had a flexible linker, and promoted the DNA–protein interaction at 21-times lower concentration than the corresponding monovalent control compound. Elsevier Science Ltd 2012-01-01 /pmc/articles/PMC3267017/ /pubmed/22137339 http://dx.doi.org/10.1016/j.bmcl.2011.11.017 Text en © 2012 Elsevier Ltd. https://creativecommons.org/licenses/by/3.0/ Open Access under CC BY 3.0 (https://creativecommons.org/licenses/by/3.0/) license |
spellingShingle | Article Joce, Catherine White, Rebecca Stockley, Peter G. Warriner, Stuart Turnbull, W. Bruce Nelson, Adam Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title | Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title_full | Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title_fullStr | Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title_full_unstemmed | Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title_short | Design, synthesis and in vitro evaluation of novel bivalent S-adenosylmethionine analogues |
title_sort | design, synthesis and in vitro evaluation of novel bivalent s-adenosylmethionine analogues |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267017/ https://www.ncbi.nlm.nih.gov/pubmed/22137339 http://dx.doi.org/10.1016/j.bmcl.2011.11.017 |
work_keys_str_mv | AT jocecatherine designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues AT whiterebecca designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues AT stockleypeterg designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues AT warrinerstuart designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues AT turnbullwbruce designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues AT nelsonadam designsynthesisandinvitroevaluationofnovelbivalentsadenosylmethionineanalogues |