Cargando…

Proton magnetic resonance spectroscopy in depression

Magnetic Resonance Spectroscopy (MRS) is a unique technique that can directly assess the concentration of various biochemical metabolites in the brain. Thus, it is used in the study of molecular pathophysiology of different neuropsychiatric disorders, such as, the major depressive disorder and has b...

Descripción completa

Detalles Bibliográficos
Autores principales: Rao, Naren P., Venkatasubramanian, Ganesan, Gangadhar, Bangalore N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Medknow Publications & Media Pvt Ltd 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267341/
https://www.ncbi.nlm.nih.gov/pubmed/22303038
http://dx.doi.org/10.4103/0019-5545.91903
Descripción
Sumario:Magnetic Resonance Spectroscopy (MRS) is a unique technique that can directly assess the concentration of various biochemical metabolites in the brain. Thus, it is used in the study of molecular pathophysiology of different neuropsychiatric disorders, such as, the major depressive disorder and has been an area of active research. We conducted a computer-based literature search using the Pubmed database with ‘magnetic resonance spectroscopy’, ‘MRS’, ‘depression’, and ‘major depressive disorder’ as the key words, supplemented by a manual search of bibliographic cross-referencing. Studies in depression report abnormalities in the frontal cortex, basal ganglia, hippocampus, anterior cingulate cortex, and the occipital cortex. These abnormalities improve after treatment with selective serotonin reuptake inhibitor, electroconvulsive therapy, and yoga, and thus, are possibly state-dependent. The findings are consistent with other morphometric and clinical studies and support the proposed pathophysiological theory of dysfunction in the neuronal circuits involving the frontal cortex, limbic cortex, and basal ganglia. Spectroscopy also has potential implications in predicting the response to treatment and formulating individualized pharmacotherapy.