Cargando…

Anatomical connectivity patterns predict face-selectivity in the fusiform gyrus

A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using on...

Descripción completa

Detalles Bibliográficos
Autores principales: Saygin, Zeynep M., Osher, David E., Koldewyn, Kami, Reynolds, Gretchen, Gabrieli, John D.E., Saxe, Rebecca R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3267901/
https://www.ncbi.nlm.nih.gov/pubmed/22197830
http://dx.doi.org/10.1038/nn.3001
Descripción
Sumario:A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion weighted imaging, we are able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure-function relationship discovered from these participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks, and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity is highly influential in predicting face-selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.