Cargando…
Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease
Alzheimer disease (AD) is an age-related progressive neurodegenerative disorder. This devastating disease is characterized by the presence of senile plaques (SP), neurofibrillary tangles (NFTs), and loss of synapses. Amyloid beta-peptide 1–42 (Aβ(1–42)) is the main component of SP and is pivotal to...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE-Hindawi Access to Research
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268025/ https://www.ncbi.nlm.nih.gov/pubmed/22312456 http://dx.doi.org/10.4061/2011/198430 |
_version_ | 1782222341467537408 |
---|---|
author | Butterfield, D. Allan Sultana, Rukhsana |
author_facet | Butterfield, D. Allan Sultana, Rukhsana |
author_sort | Butterfield, D. Allan |
collection | PubMed |
description | Alzheimer disease (AD) is an age-related progressive neurodegenerative disorder. This devastating disease is characterized by the presence of senile plaques (SP), neurofibrillary tangles (NFTs), and loss of synapses. Amyloid beta-peptide 1–42 (Aβ(1–42)) is the main component of SP and is pivotal to AD pathogenesis. Brain of subjects with AD and arguably its earliest manifestation, mild cognitive impairment (MCI), demonstrate increased levels of oxidative stress markers. Our laboratory combined these two aspects of AD and MCI and proposed the Aβ(1–42)-associated free radical oxidative stress hypothesis to explain oxidative stress under which the MCI and AD brain exist and the loss of synapses in both disorders. A large number of in vitro and in vivo studies showed that Aβ causes protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems. Methionine located at residue 35 of Aβ(1–42) is an important contributor to the oxidative stress associated with this neurotoxic peptide. In this paper, we summarize studies involving Met-35 of Aβ(1–42). Understanding the role of the single methionine residue of Aβ(1–42) may help in understanding underlying disease mechanisms in AD and MCI. |
format | Online Article Text |
id | pubmed-3268025 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2011 |
publisher | SAGE-Hindawi Access to Research |
record_format | MEDLINE/PubMed |
spelling | pubmed-32680252012-02-06 Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease Butterfield, D. Allan Sultana, Rukhsana J Amino Acids Review Article Alzheimer disease (AD) is an age-related progressive neurodegenerative disorder. This devastating disease is characterized by the presence of senile plaques (SP), neurofibrillary tangles (NFTs), and loss of synapses. Amyloid beta-peptide 1–42 (Aβ(1–42)) is the main component of SP and is pivotal to AD pathogenesis. Brain of subjects with AD and arguably its earliest manifestation, mild cognitive impairment (MCI), demonstrate increased levels of oxidative stress markers. Our laboratory combined these two aspects of AD and MCI and proposed the Aβ(1–42)-associated free radical oxidative stress hypothesis to explain oxidative stress under which the MCI and AD brain exist and the loss of synapses in both disorders. A large number of in vitro and in vivo studies showed that Aβ causes protein oxidation, lipid peroxidation, reactive oxygen species formation, and cell death in neuronal and synaptosomal systems. Methionine located at residue 35 of Aβ(1–42) is an important contributor to the oxidative stress associated with this neurotoxic peptide. In this paper, we summarize studies involving Met-35 of Aβ(1–42). Understanding the role of the single methionine residue of Aβ(1–42) may help in understanding underlying disease mechanisms in AD and MCI. SAGE-Hindawi Access to Research 2011 2011-06-04 /pmc/articles/PMC3268025/ /pubmed/22312456 http://dx.doi.org/10.4061/2011/198430 Text en Copyright © 2011 D. A. Butterfield and R. Sultana. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Review Article Butterfield, D. Allan Sultana, Rukhsana Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title | Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title_full | Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title_fullStr | Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title_full_unstemmed | Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title_short | Methionine-35 of Aβ(1–42): Importance for Oxidative Stress in Alzheimer Disease |
title_sort | methionine-35 of aβ(1–42): importance for oxidative stress in alzheimer disease |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268025/ https://www.ncbi.nlm.nih.gov/pubmed/22312456 http://dx.doi.org/10.4061/2011/198430 |
work_keys_str_mv | AT butterfielddallan methionine35ofab142importanceforoxidativestressinalzheimerdisease AT sultanarukhsana methionine35ofab142importanceforoxidativestressinalzheimerdisease |