Cargando…

Functionally Relevant Residues of Cdr1p: A Multidrug ABC Transporter of Human Pathogenic Candida albicans

Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is e...

Descripción completa

Detalles Bibliográficos
Autores principales: Prasad, Rajendra, Sharma, Monika, Rawal, Manpreet Kaur
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE-Hindawi Access to Research 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268037/
https://www.ncbi.nlm.nih.gov/pubmed/22312462
http://dx.doi.org/10.4061/2011/531412
Descripción
Sumario:Reduced intracellular accumulation of drugs (due to rapid efflux) mediated by the efflux pump proteins belonging to ABC (ATP Binding Cassette) and MFS (Major Facilitators) superfamily is one of the most common strategies adopted by multidrug resistance (MDR) pathogenic yeasts. To combat MDR, it is essential to understand the structure and function of these transporters so that inhibitors/modulators to these can be developed. The sequence alignments of the ABC transporters reveal selective divergence within much conserved domains of Nucleotide-Binding Domains (NBDs) which is unique to all fungal transporters. Recently, the role of conserved but divergent residues of Candida Drug Resistance 1 (CDR1), an ABC drug transporter of human pathogenic Candida albicans, has been examined with regard to ATP binding and hydrolysis. In this paper, we focus on some of the recent advances on the relevance of divergent and conserved amino acids of CaCdr1p and also discuss as to how drug interacts with Trans Membrane Domains (TMDs) residues for its extrusion from MDR cells.