Cargando…

Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population

The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell–cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Hepara...

Descripción completa

Detalles Bibliográficos
Autores principales: Rempel, Lea A., Freking, Brad A., Miles, Jeremy R., Nonneman, Dan J., Rohrer, Gary A., Schneider, James F., Vallet, Jeffrey L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268575/
https://www.ncbi.nlm.nih.gov/pubmed/22303316
http://dx.doi.org/10.3389/fgene.2011.00020
_version_ 1782222382176403456
author Rempel, Lea A.
Freking, Brad A.
Miles, Jeremy R.
Nonneman, Dan J.
Rohrer, Gary A.
Schneider, James F.
Vallet, Jeffrey L.
author_facet Rempel, Lea A.
Freking, Brad A.
Miles, Jeremy R.
Nonneman, Dan J.
Rohrer, Gary A.
Schneider, James F.
Vallet, Jeffrey L.
author_sort Rempel, Lea A.
collection PubMed
description The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell–cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Heparanase (HPSE) and hyaluronidases (HYAL) are responsible for degrading heparan sulfate and hyaluronan, respectively. Therefore, the objective of this study was to evaluate the relationship of SNPs distinct to HPSE, HYAL1, and HYAL2 with measurements of reproduction and production traits in swine. Single trait associations were performed on a Landrace–Duroc–Yorkshire population using SNPs discovered and identified in HPSE, HYAL1, and HYAL2. Analyses were conducted on an extended pedigree and SNPs were found to be associated with reproductive and production traits. Prior to multiple-testing corrections, SNPs within HPSE were weakly associated (P < 0.03) having additive effects with age at puberty (−2.5 ± 1.08 days), ovulation rate (0.5 ± 0.24 corpora lutea), and number of piglets born alive (0.9 ± 0.44 piglets). A HYAL1 and two HYAL2 SNP were nominally associated (P ≤ 0.0063) with number of piglets born alive after multiple-testing corrections (effects between 1.02 and 1.44 piglets), while one of the same HYAL2 markers maintained a modest association (P = 0.0043) having a dominant effect with number of piglets weaned (1.2 ± 0.41 piglets) after multiple-testing correction. Functionally, HPSE and HYAL1 and 2 have been shown to participate in events related to ovarian and placental activity. SNPs from these studies could potentially assist with understanding genetic components underlying sow lifetime productivity as measured by piglet survivability based on number born alive and number weaned, thereby contributing to a greater number of pigs/sow/year.
format Online
Article
Text
id pubmed-3268575
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-32685752012-02-02 Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population Rempel, Lea A. Freking, Brad A. Miles, Jeremy R. Nonneman, Dan J. Rohrer, Gary A. Schneider, James F. Vallet, Jeffrey L. Front Genet Genetics The ovary and placenta are dynamic structures requiring constant modification both structurally and through cell–cell communication capabilities. The extracellular matrix and basement membranes are primarily composed of a milieu of glycosaminoglycans, including heparan sulfate and hyaluronan. Heparanase (HPSE) and hyaluronidases (HYAL) are responsible for degrading heparan sulfate and hyaluronan, respectively. Therefore, the objective of this study was to evaluate the relationship of SNPs distinct to HPSE, HYAL1, and HYAL2 with measurements of reproduction and production traits in swine. Single trait associations were performed on a Landrace–Duroc–Yorkshire population using SNPs discovered and identified in HPSE, HYAL1, and HYAL2. Analyses were conducted on an extended pedigree and SNPs were found to be associated with reproductive and production traits. Prior to multiple-testing corrections, SNPs within HPSE were weakly associated (P < 0.03) having additive effects with age at puberty (−2.5 ± 1.08 days), ovulation rate (0.5 ± 0.24 corpora lutea), and number of piglets born alive (0.9 ± 0.44 piglets). A HYAL1 and two HYAL2 SNP were nominally associated (P ≤ 0.0063) with number of piglets born alive after multiple-testing corrections (effects between 1.02 and 1.44 piglets), while one of the same HYAL2 markers maintained a modest association (P = 0.0043) having a dominant effect with number of piglets weaned (1.2 ± 0.41 piglets) after multiple-testing correction. Functionally, HPSE and HYAL1 and 2 have been shown to participate in events related to ovarian and placental activity. SNPs from these studies could potentially assist with understanding genetic components underlying sow lifetime productivity as measured by piglet survivability based on number born alive and number weaned, thereby contributing to a greater number of pigs/sow/year. Frontiers Research Foundation 2011-05-04 /pmc/articles/PMC3268575/ /pubmed/22303316 http://dx.doi.org/10.3389/fgene.2011.00020 Text en Copyright © 2011 Rempel, Freking, Miles, Nonneman, Rohrer, Schneider and Vallet. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
spellingShingle Genetics
Rempel, Lea A.
Freking, Brad A.
Miles, Jeremy R.
Nonneman, Dan J.
Rohrer, Gary A.
Schneider, James F.
Vallet, Jeffrey L.
Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title_full Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title_fullStr Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title_full_unstemmed Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title_short Association of Porcine Heparanase and Hyaluronidase 1 and 2 with Reproductive and Production Traits in a Landrace–Duroc–Yorkshire Population
title_sort association of porcine heparanase and hyaluronidase 1 and 2 with reproductive and production traits in a landrace–duroc–yorkshire population
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3268575/
https://www.ncbi.nlm.nih.gov/pubmed/22303316
http://dx.doi.org/10.3389/fgene.2011.00020
work_keys_str_mv AT rempelleaa associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT frekingbrada associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT milesjeremyr associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT nonnemandanj associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT rohrergarya associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT schneiderjamesf associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation
AT valletjeffreyl associationofporcineheparanaseandhyaluronidase1and2withreproductiveandproductiontraitsinalandracedurocyorkshirepopulation