Cargando…
Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy
We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269718/ https://www.ncbi.nlm.nih.gov/pubmed/22312284 http://dx.doi.org/10.3390/ijms13010758 |
_version_ | 1782222500131766272 |
---|---|
author | Fujisawa, Seiichiro Kadoma, Yoshinori |
author_facet | Fujisawa, Seiichiro Kadoma, Yoshinori |
author_sort | Fujisawa, Seiichiro |
collection | PubMed |
description | We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates. |
format | Online Article Text |
id | pubmed-3269718 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Molecular Diversity Preservation International (MDPI) |
record_format | MEDLINE/PubMed |
spelling | pubmed-32697182012-02-06 Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy Fujisawa, Seiichiro Kadoma, Yoshinori Int J Mol Sci Article We investigated the quantitative structure-activity relationships between hemolytic activity (log 1/H(50)) or in vivo mouse intraperitoneal (ip) LD(50) using reported data for α,β-unsaturated carbonyl compounds such as (meth)acrylate monomers and their (13)C-NMR β-carbon chemical shift (δ). The log 1/H(50) value for methacrylates was linearly correlated with the δC(β) value. That for (meth)acrylates was linearly correlated with log P, an index of lipophilicity. The ipLD(50) for (meth)acrylates was linearly correlated with δC(β) but not with log P. For (meth)acrylates, the δC(β) value, which is dependent on the π-electron density on the β-carbon, was linearly correlated with PM3-based theoretical parameters (chemical hardness, η; electronegativity, χ; electrophilicity, ω), whereas log P was linearly correlated with heat of formation (HF). Also, the interaction between (meth)acrylates and DPPC liposomes in cell membrane molecular models was investigated using (1)H-NMR spectroscopy and differential scanning calorimetry (DSC). The log 1/H(50) value was related to the difference in chemical shift (ΔδHa) (Ha: H (trans) attached to the β-carbon) between the free monomer and the DPPC liposome-bound monomer. Monomer-induced DSC phase transition properties were related to HF for monomers. NMR chemical shifts may represent a valuable parameter for investigating the biological mechanisms of action of (meth)acrylates. Molecular Diversity Preservation International (MDPI) 2012-01-12 /pmc/articles/PMC3269718/ /pubmed/22312284 http://dx.doi.org/10.3390/ijms13010758 Text en © 2012 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. http://creativecommons.org/licenses/by/3.0 This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Fujisawa, Seiichiro Kadoma, Yoshinori Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title | Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title_full | Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title_fullStr | Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title_full_unstemmed | Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title_short | Mechanisms of Action of (Meth)acrylates in Hemolytic Activity, in Vivo Toxicity and Dipalmitoylphosphatidylcholine (DPPC) Liposomes Determined Using NMR Spectroscopy |
title_sort | mechanisms of action of (meth)acrylates in hemolytic activity, in vivo toxicity and dipalmitoylphosphatidylcholine (dppc) liposomes determined using nmr spectroscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269718/ https://www.ncbi.nlm.nih.gov/pubmed/22312284 http://dx.doi.org/10.3390/ijms13010758 |
work_keys_str_mv | AT fujisawaseiichiro mechanismsofactionofmethacrylatesinhemolyticactivityinvivotoxicityanddipalmitoylphosphatidylcholinedppcliposomesdeterminedusingnmrspectroscopy AT kadomayoshinori mechanismsofactionofmethacrylatesinhemolyticactivityinvivotoxicityanddipalmitoylphosphatidylcholinedppcliposomesdeterminedusingnmrspectroscopy |