Cargando…

Evaluation of a Centrifuged Double Y-Shape Microfluidic Platform for Simple Continuous Cell Environment Exchange

We have demonstrated the efficacy of a microfluidic medium exchange method for single cells using passive centrifugal force of a rotating microfluidic-chip based platform. At the boundary of two laminar flows at the gathering area of two microfluidic pathways in a Y-shape, the cells were successfull...

Descripción completa

Detalles Bibliográficos
Autores principales: Hattori, Akihiro, Yasuda, Kenji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269722/
https://www.ncbi.nlm.nih.gov/pubmed/22312288
http://dx.doi.org/10.3390/ijms13010819
Descripción
Sumario:We have demonstrated the efficacy of a microfluidic medium exchange method for single cells using passive centrifugal force of a rotating microfluidic-chip based platform. At the boundary of two laminar flows at the gathering area of two microfluidic pathways in a Y-shape, the cells were successfully transported from one laminar flow to the other, without mixing the two microfluidic mediums of the two laminar flows during cell transportation, within 5 s with 1 g (150 rpm) to 36.3 g (900 rpm) acceleration, with 93.5% efficiency. The results indicate that this is one of the most simple and precise tools for exchanging medium in the shortest amount of time.