Cargando…
Candidate Genes in Ocular Dominance Plasticity
Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269753/ https://www.ncbi.nlm.nih.gov/pubmed/22347157 http://dx.doi.org/10.3389/fnins.2012.00011 |
_version_ | 1782222508311707648 |
---|---|
author | Rietman, M. Liset Sommeijer, J.-P. Levelt, Christiaan N. Heimel, J. Alexander |
author_facet | Rietman, M. Liset Sommeijer, J.-P. Levelt, Christiaan N. Heimel, J. Alexander |
author_sort | Rietman, M. Liset |
collection | PubMed |
description | Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. We propose that genes with a high correlation are likely to play a role in OD plasticity. We have tested this hypothesis for genes whose inactivation is known to affect OD plasticity. The expression levels of these genes indeed correlated with OD plasticity if their levels showed strong differences between the BXD strains. To narrow down our candidate list of correlated genes, we have selected only those genes that were previously found to be regulated by visual experience and associated with pathways implicated in OD plasticity. This resulted in a list of 32 candidate genes. The list contained unproven, but not unexpected candidates such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A) receptor, acetylcholine esterase, and the catalytic subunit of cAMP-dependent protein kinase A. This demonstrates the viability of our approach. More interestingly, the following novel candidate genes were identified: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. Whether all these novel candidates indeed function in OD plasticity remains to be established, but possible roles of some of them are discussed in the article. |
format | Online Article Text |
id | pubmed-3269753 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | Frontiers Research Foundation |
record_format | MEDLINE/PubMed |
spelling | pubmed-32697532012-02-15 Candidate Genes in Ocular Dominance Plasticity Rietman, M. Liset Sommeijer, J.-P. Levelt, Christiaan N. Heimel, J. Alexander Front Neurosci Neuroscience Many studies have been devoted to the identification of genes involved in experience-dependent plasticity in the visual cortex. To discover new candidate genes, we have reexamined data from one such study on ocular dominance (OD) plasticity in recombinant inbred BXD mouse strains. We have correlated the level of plasticity with the gene expression data in the neocortex that have become available for these same strains. We propose that genes with a high correlation are likely to play a role in OD plasticity. We have tested this hypothesis for genes whose inactivation is known to affect OD plasticity. The expression levels of these genes indeed correlated with OD plasticity if their levels showed strong differences between the BXD strains. To narrow down our candidate list of correlated genes, we have selected only those genes that were previously found to be regulated by visual experience and associated with pathways implicated in OD plasticity. This resulted in a list of 32 candidate genes. The list contained unproven, but not unexpected candidates such as the genes for IGF-1, NCAM1, NOGO-A, the gamma2 subunit of the GABA(A) receptor, acetylcholine esterase, and the catalytic subunit of cAMP-dependent protein kinase A. This demonstrates the viability of our approach. More interestingly, the following novel candidate genes were identified: Akap7, Akt1, Camk2d, Cckbr, Cd44, Crim1, Ctdsp2, Dnajc5, Gnai1, Itpka, Mapk8, Nbea, Nfatc3, Nlk, Npy5r, Phf21a, Phip, Ppm1l, Ppp1r1b, Rbbp4, Slc1a3, Slit2, Socs2, Spock3, St8sia1, Zfp207. Whether all these novel candidates indeed function in OD plasticity remains to be established, but possible roles of some of them are discussed in the article. Frontiers Research Foundation 2012-02-01 /pmc/articles/PMC3269753/ /pubmed/22347157 http://dx.doi.org/10.3389/fnins.2012.00011 Text en Copyright © 2012 Rietman, Sommeijer, Neuro-Bsik Mouse Phenomics Consortium, Levelt and Heimel. http://www.frontiersin.org/licenseagreement This is an open-access article distributed under the terms of the Creative Commons Attribution Non Commercial License, which permits non-commercial use, distribution, and reproduction in other forums, provided the original authors and source are credited. |
spellingShingle | Neuroscience Rietman, M. Liset Sommeijer, J.-P. Levelt, Christiaan N. Heimel, J. Alexander Candidate Genes in Ocular Dominance Plasticity |
title | Candidate Genes in Ocular Dominance Plasticity |
title_full | Candidate Genes in Ocular Dominance Plasticity |
title_fullStr | Candidate Genes in Ocular Dominance Plasticity |
title_full_unstemmed | Candidate Genes in Ocular Dominance Plasticity |
title_short | Candidate Genes in Ocular Dominance Plasticity |
title_sort | candidate genes in ocular dominance plasticity |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269753/ https://www.ncbi.nlm.nih.gov/pubmed/22347157 http://dx.doi.org/10.3389/fnins.2012.00011 |
work_keys_str_mv | AT rietmanmliset candidategenesinoculardominanceplasticity AT sommeijerjp candidategenesinoculardominanceplasticity AT candidategenesinoculardominanceplasticity AT leveltchristiaann candidategenesinoculardominanceplasticity AT heimeljalexander candidategenesinoculardominanceplasticity |