Cargando…
Exploratory Dijkstra forest based automatic vessel segmentation: applications in video indirect ophthalmoscopy (VIO)
We present a methodology for extracting the vascular network in the human retina using Dijkstra’s shortest-path algorithm. Our method preserves vessel thickness, requires no manual intervention, and follows vessel branching naturally and efficiently. To test our method, we constructed a retinal vide...
Autores principales: | Estrada, Rolando, Tomasi, Carlo, Cabrera, Michelle T., Wallace, David K., Freedman, Sharon F., Farsiu, Sina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Optical Society of America
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269849/ https://www.ncbi.nlm.nih.gov/pubmed/22312585 http://dx.doi.org/10.1364/BOE.3.000327 |
Ejemplares similares
-
Enhanced video indirect ophthalmoscopy (VIO) via robust mosaicing
por: Estrada, Rolando, et al.
Publicado: (2011) -
Using an Image Fusion Methodology to Improve Efficiency and Traceability of Posterior Pole Vessel Analysis by ROPtool
por: Prakalapakorn, Sasapin.G., et al.
Publicado: (2017) -
Automatic segmentation of closed-contour features in ophthalmic images using graph theory and dynamic programming
por: Chiu, Stephanie J., et al.
Publicado: (2012) -
Robust automatic segmentation of corneal layer boundaries in SDOCT images using graph theory and dynamic programming
por: LaRocca, Francesco, et al.
Publicado: (2011) -
Regional Image Features Model for Automatic Classification between Normal and Glaucoma in Fundus and Scanning Laser Ophthalmoscopy (SLO) Images
por: Haleem, Muhammad Salman, et al.
Publicado: (2016)