Cargando…
Simple and efficient machine learning frameworks for identifying protein-protein interaction relevant articles and experimental methods used to study the interactions
BACKGROUND: Protein-protein interaction (PPI) is an important biomedical phenomenon. Automatically detecting PPI-relevant articles and identifying methods that are used to study PPI are important text mining tasks. In this study, we have explored domain independent features to develop two open sourc...
Autores principales: | Agarwal, Shashank, Liu, Feifan, Yu, Hong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3269933/ https://www.ncbi.nlm.nih.gov/pubmed/22151701 http://dx.doi.org/10.1186/1471-2105-12-S8-S10 |
Ejemplares similares
-
Deep learning frameworks for protein–protein interaction prediction
por: Hu, Xiaotian, et al.
Publicado: (2022) -
ProtInteract: A deep learning framework for predicting protein–protein interactions
por: Soleymani, Farzan, et al.
Publicado: (2023) -
The Protein-Protein Interaction tasks of BioCreative III: classification/ranking of articles and linking bio-ontology concepts to full text
por: Krallinger, Martin, et al.
Publicado: (2011) -
Developing a machine learning model to identify protein–protein interaction hotspots to facilitate drug discovery
por: Nandakumar, Rohit, et al.
Publicado: (2020) -
Machine Learning Models to Predict Protein–Protein Interaction Inhibitors
por: Díaz-Eufracio, Bárbara I., et al.
Publicado: (2022)