Cargando…

Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies

We describe a statistical approach to predict gender-labeling errors in candidate-gene association studies, when Y-chromosome markers have not been included in the genotyping set. The approach adds value to methods that consider only the heterozygosity of X-chromosome SNPs, by incorporating availabl...

Descripción completa

Detalles Bibliográficos
Autores principales: Qu, Conghui, Schuetz, Johanna M., Min, Jeong Eun, Leach, Stephen, Daley, Denise, Spinelli, John J., Brooks-Wilson, Angela, Graham, Jinko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Research Foundation 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270323/
https://www.ncbi.nlm.nih.gov/pubmed/22303327
http://dx.doi.org/10.3389/fgene.2011.00031
_version_ 1782222559150866432
author Qu, Conghui
Schuetz, Johanna M.
Min, Jeong Eun
Leach, Stephen
Daley, Denise
Spinelli, John J.
Brooks-Wilson, Angela
Graham, Jinko
author_facet Qu, Conghui
Schuetz, Johanna M.
Min, Jeong Eun
Leach, Stephen
Daley, Denise
Spinelli, John J.
Brooks-Wilson, Angela
Graham, Jinko
author_sort Qu, Conghui
collection PubMed
description We describe a statistical approach to predict gender-labeling errors in candidate-gene association studies, when Y-chromosome markers have not been included in the genotyping set. The approach adds value to methods that consider only the heterozygosity of X-chromosome SNPs, by incorporating available information about the intensity of X-chromosome SNPs in candidate genes relative to autosomal SNPs from the same individual. To our knowledge, no published methods formalize a framework in which heterozygosity and relative intensity are simultaneously taken into account. Our method offers the advantage that, in the genotyping set, no additional space is required beyond that already assigned to X-chromosome SNPs in the candidate genes. We also show how the predictions can be used in a two-phase sampling design to estimate the gender-labeling error rates for an entire study, at a fraction of the cost of a conventional design.
format Online
Article
Text
id pubmed-3270323
institution National Center for Biotechnology Information
language English
publishDate 2011
publisher Frontiers Research Foundation
record_format MEDLINE/PubMed
spelling pubmed-32703232012-02-02 Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies Qu, Conghui Schuetz, Johanna M. Min, Jeong Eun Leach, Stephen Daley, Denise Spinelli, John J. Brooks-Wilson, Angela Graham, Jinko Front Genet Genetics We describe a statistical approach to predict gender-labeling errors in candidate-gene association studies, when Y-chromosome markers have not been included in the genotyping set. The approach adds value to methods that consider only the heterozygosity of X-chromosome SNPs, by incorporating available information about the intensity of X-chromosome SNPs in candidate genes relative to autosomal SNPs from the same individual. To our knowledge, no published methods formalize a framework in which heterozygosity and relative intensity are simultaneously taken into account. Our method offers the advantage that, in the genotyping set, no additional space is required beyond that already assigned to X-chromosome SNPs in the candidate genes. We also show how the predictions can be used in a two-phase sampling design to estimate the gender-labeling error rates for an entire study, at a fraction of the cost of a conventional design. Frontiers Research Foundation 2011-06-15 /pmc/articles/PMC3270323/ /pubmed/22303327 http://dx.doi.org/10.3389/fgene.2011.00031 Text en Copyright © 2011 Qu, Schuetz, Min, Leach, Daley, Spinelli, Brooks-Wilson and Graham. http://www.frontiersin.org/licenseagreement This is an open-access article subject to a non-exclusive license between the authors and Frontiers Media SA, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and other Frontiers conditions are complied with.
spellingShingle Genetics
Qu, Conghui
Schuetz, Johanna M.
Min, Jeong Eun
Leach, Stephen
Daley, Denise
Spinelli, John J.
Brooks-Wilson, Angela
Graham, Jinko
Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title_full Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title_fullStr Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title_full_unstemmed Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title_short Cost–Effective Prediction of Gender-Labeling Errors and Estimation of Gender-Labeling Error Rates in Candidate-Gene Association Studies
title_sort cost–effective prediction of gender-labeling errors and estimation of gender-labeling error rates in candidate-gene association studies
topic Genetics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3270323/
https://www.ncbi.nlm.nih.gov/pubmed/22303327
http://dx.doi.org/10.3389/fgene.2011.00031
work_keys_str_mv AT quconghui costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT schuetzjohannam costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT minjeongeun costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT leachstephen costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT daleydenise costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT spinellijohnj costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT brookswilsonangela costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies
AT grahamjinko costeffectivepredictionofgenderlabelingerrorsandestimationofgenderlabelingerrorratesincandidategeneassociationstudies