Cargando…

Analysis of striatal transcriptome in mice overexpressing human wild-type alpha-synuclein supports synaptic dysfunction and suggests mechanisms of neuroprotection for striatal neurons

BACKGROUND: Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is obse...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabeza-Arvelaiz, Yofre, Fleming, Sheila M, Richter, Franziska, Masliah, Eliezer, Chesselet, Marie-Francoise, Schiestl, Robert H
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271045/
https://www.ncbi.nlm.nih.gov/pubmed/22165993
http://dx.doi.org/10.1186/1750-1326-6-83
Descripción
Sumario:BACKGROUND: Alpha synuclein (SNCA) has been linked to neurodegenerative diseases (synucleinopathies) that include Parkinson's disease (PD). Although the primary neurodegeneration in PD involves nigrostriatal dopaminergic neurons, more extensive yet regionally selective neurodegeneration is observed in other synucleinopathies. Furthermore, SNCA is ubiquitously expressed in neurons and numerous neuronal systems are dysfunctional in PD. Therefore it is of interest to understand how overexpression of SNCA affects neuronal function in regions not directly targeted for neurodegeneration in PD. RESULTS: The present study investigated the consequences of SNCA overexpression on cellular processes and functions in the striatum of mice overexpressing wild-type, human SNCA under the Thy1 promoter (Thy1-aSyn mice) by transcriptome analysis. The analysis revealed alterations in multiple biological processes in the striatum of Thy1-aSyn mice, including synaptic plasticity, signaling, transcription, apoptosis, and neurogenesis. CONCLUSION: The results support a key role for SNCA in synaptic function and revealed an apoptotic signature in Thy1-aSyn mice, which together with specific alterations of neuroprotective genes suggest the activation of adaptive compensatory mechanisms that may protect striatal neurons in conditions of neuronal overexpression of SNCA.