Cargando…
Identifying polyglutamine protein species in situ that best predict neurodegeneration
Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function on proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies (IBs...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271120/ https://www.ncbi.nlm.nih.gov/pubmed/22037470 http://dx.doi.org/10.1038/nchembio.694 |
Sumario: | Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function on proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies (IBs), IB formation may be a neuronal coping response to more toxic forms of polyQ. The exact structure of these more toxic forms is unknown. Here we show that monoclonal antibody (mAb) 3B5H10 recognizes a species of polyQ protein in situ that strongly predicts neuronal death. The epitope selectively appears among some of the many low-molecular weight conformational states expanded polyQ assumes and disappears in higher molecular-weight aggregated forms, such as IBs. These results suggest that protein monomers and possibly small oligomers containing expanded polyQ stretches can adopt a conformation that is recognized by 3B5H10 and is toxic or closely related to a toxic species. |
---|