Cargando…
Combining Graph and Machine Learning Methods to Analyze Differences in Functional Connectivity Across Sex
In this work we combine machine learning methods and graph theoretical analysis to investigate gender associated differences in resting state brain network connectivity. The set of all correlations computed from the fMRI resting state data is used as input features for classification. Two ensemble l...
Autores principales: | Casanova, R, Whitlow, C.T, Wagner, B, Espeland, M.A, Maldjian, J.A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Open
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271304/ https://www.ncbi.nlm.nih.gov/pubmed/22312418 http://dx.doi.org/10.2174/1874440001206010001 |
Ejemplares similares
-
High Dimensional Classification of Structural MRI Alzheimer’s Disease Data Based on Large Scale Regularization
por: Casanova, Ramon, et al.
Publicado: (2011) -
Machine learning to analyze single‐case graphs: A comparison to visual inspection
por: Lanovaz, Marc J., et al.
Publicado: (2021) -
Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods
por: Phillips, David J., et al.
Publicado: (2015) -
Graph-Powered Analytics and Machine Learning with TigerGraph
por: Lee, Victor, et al.
Publicado: (2022) -
Machine learning for the detection of social anxiety disorder using effective connectivity and graph theory measures
por: Al-Ezzi, Abdulhakim, et al.
Publicado: (2023)