Cargando…
Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats
BACKGROUND: Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271957/ https://www.ncbi.nlm.nih.gov/pubmed/22257737 http://dx.doi.org/10.1186/1742-2094-9-13 |
_version_ | 1782222761446342656 |
---|---|
author | Liew, Hock-Kean Pang, Cheng-Yoong Hsu, Chih-Wei Wang, Mei-Jen Li, Ting-Yi Peng, Hsiao-Fen Kuo, Jon-Son Wang, Jia-Yi |
author_facet | Liew, Hock-Kean Pang, Cheng-Yoong Hsu, Chih-Wei Wang, Mei-Jen Li, Ting-Yi Peng, Hsiao-Fen Kuo, Jon-Son Wang, Jia-Yi |
author_sort | Liew, Hock-Kean |
collection | PubMed |
description | BACKGROUND: Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route. METHODS: ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p. administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume and lesion volume were assessed by Drabkin's method and morphometric assay, respectively. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA). Microglial activation and neuronal loss were evaluated by immunohistochemistry. RESULTS: Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-α, IL-1β, and IL-6 production 1, 3 and 7 days post-ICH. CONCLUSION: Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen. |
format | Online Article Text |
id | pubmed-3271957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32719572012-02-04 Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats Liew, Hock-Kean Pang, Cheng-Yoong Hsu, Chih-Wei Wang, Mei-Jen Li, Ting-Yi Peng, Hsiao-Fen Kuo, Jon-Son Wang, Jia-Yi J Neuroinflammation Research BACKGROUND: Intracerebral hemorrhage (ICH) remains a serious clinical problem lacking effective treatment. Urocortin (UCN), a novel anti-inflammatory neuropeptide, protects injured cardiomyocytes and dopaminergic neurons. Our preliminary studies indicate UCN alleviates ICH-induced brain injury when administered intracerebroventricularly (ICV). The present study examines the therapeutic effect of UCN on ICH-induced neurological deficits and neuroinflammation when administered by the more convenient intraperitoneal (i.p.) route. METHODS: ICH was induced in male Sprague-Dawley rats by intrastriatal infusion of bacterial collagenase VII-S or autologous blood. UCN (2.5 or 25 μg/kg) was administered i.p. at 60 minutes post-ICH. Penetration of i.p. administered fluorescently labeled UCN into the striatum was examined by fluorescence microscopy. Neurological deficits were evaluated by modified neurological severity score (mNSS). Brain edema was assessed using the dry/wet method. Blood-brain barrier (BBB) disruption was assessed using the Evans blue assay. Hemorrhagic volume and lesion volume were assessed by Drabkin's method and morphometric assay, respectively. Pro-inflammatory cytokine (TNF-α, IL-1β, and IL-6) expression was evaluated by enzyme-linked immunosorbent assay (ELISA). Microglial activation and neuronal loss were evaluated by immunohistochemistry. RESULTS: Administration of UCN reduced neurological deficits from 1 to 7 days post-ICH. Surprisingly, although a higher dose (25 μg/kg, i.p.) also reduced the functional deficits associated with ICH, it is significantly less effective than the lower dose (2.5 μg/kg, i.p.). Beneficial results with the low dose of UCN included a reduction in neurological deficits from 1 to 7 days post-ICH, as well as a reduction in brain edema, BBB disruption, lesion volume, microglial activation and neuronal loss 3 days post-ICH, and suppression of TNF-α, IL-1β, and IL-6 production 1, 3 and 7 days post-ICH. CONCLUSION: Systemic post-ICH treatment with UCN reduces striatal injury and neurological deficits, likely via suppression of microglial activation and inflammatory cytokine production. The low dose of UCN necessary and the clinically amenable peripheral route make UCN a potential candidate for development into a clinical treatment regimen. BioMed Central 2012-01-19 /pmc/articles/PMC3271957/ /pubmed/22257737 http://dx.doi.org/10.1186/1742-2094-9-13 Text en Copyright ©2012 Liew et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Liew, Hock-Kean Pang, Cheng-Yoong Hsu, Chih-Wei Wang, Mei-Jen Li, Ting-Yi Peng, Hsiao-Fen Kuo, Jon-Son Wang, Jia-Yi Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title | Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title_full | Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title_fullStr | Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title_full_unstemmed | Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title_short | Systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
title_sort | systemic administration of urocortin after intracerebral hemorrhage reduces neurological deficits and neuroinflammation in rats |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3271957/ https://www.ncbi.nlm.nih.gov/pubmed/22257737 http://dx.doi.org/10.1186/1742-2094-9-13 |
work_keys_str_mv | AT liewhockkean systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT pangchengyoong systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT hsuchihwei systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT wangmeijen systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT litingyi systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT penghsiaofen systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT kuojonson systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats AT wangjiayi systemicadministrationofurocortinafterintracerebralhemorrhagereducesneurologicaldeficitsandneuroinflammationinrats |