Cargando…

Dynein achieves processive motion using both stochastic and coordinated stepping

Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this we developed a versatile...

Descripción completa

Detalles Bibliográficos
Autores principales: Qiu, Weihong, Derr, Nathan D., Goodman, Brian S., Villa, Elizabeth, Wu, David, Shih, William, Reck-Peterson, Samara L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272163/
https://www.ncbi.nlm.nih.gov/pubmed/22231401
http://dx.doi.org/10.1038/nsmb.2205
Descripción
Sumario:Processivity, the ability of single molecules to move continuously along a track, is a fundamental requirement of cargo-transporting molecular motors. Here, we investigate how cytoplasmic dynein, a homodimeric, microtubule-based motor, achieves processive motion. To do this we developed a versatile method for assembling Saccharomyces cerevisiae dynein heterodimers using complementary DNA oligonucleotides covalently linked to dynein monomers labeled with different organic fluorophores. Using two-color, single-molecule microscopy and high-precision, two-dimensional tracking, we find dynein has a highly variable stepping pattern that is distinct from all other processive cytoskeletal motors, which use “hand-over-hand” mechanisms. Uniquely, dynein stepping is stochastic when its two motor domains are close together. However, coordination emerges as the distance between motor domains increases, implying a tension-based mechanism governs these steps. This plasticity may allow tuning of dynein for the diversity of cellular functions it performs.