Cargando…
Using Evolutionary Algorithms for Fitting High-Dimensional Models to Neuronal Data
In the study of neurosciences, and of complex biological systems in general, there is frequently a need to fit mathematical models with large numbers of parameters to highly complex datasets. Here we consider algorithms of two different classes, gradient following (GF) methods and evolutionary algor...
Autores principales: | Svensson, Carl-Magnus, Coombes, Stephen, Peirce, Jonathan Westley |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer-Verlag
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272374/ https://www.ncbi.nlm.nih.gov/pubmed/22258828 http://dx.doi.org/10.1007/s12021-012-9140-7 |
Ejemplares similares
-
An activity based model of grating and plaid adaptation in the human visual system
por: Svensson, Carl-Magnus, et al.
Publicado: (2011) -
Learning in spatially extended dendrites
por: Svensson, Carl-Magnus, et al.
Publicado: (2007) -
Scaling and Benchmarking an Evolutionary Algorithm for Constructing Biophysical Neuronal Models
por: Ladd, Alexander, et al.
Publicado: (2022) -
Motor cortex neurons: from experiment to model via evolutionary algorithms
por: Neymotin, Samuel A, et al.
Publicado: (2015) -
Inclusion of the fitness sharing technique in an evolutionary algorithm to analyze the fitness landscape of the genetic code adaptability
por: Santos, José, et al.
Publicado: (2017)