Cargando…
BCI Competition IV – Data Set I: Learning Discriminative Patterns for Self-Paced EEG-Based Motor Imagery Detection
Detecting motor imagery activities versus non-control in brain signals is the basis of self-paced brain-computer interfaces (BCIs), but also poses a considerable challenge to signal processing due to the complex and non-stationary characteristics of motor imagery as well as non-control. This paper p...
Autores principales: | Zhang, Haihong, Guan, Cuntai, Ang, Kai Keng, Wang, Chuanchu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Research Foundation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272647/ https://www.ncbi.nlm.nih.gov/pubmed/22347153 http://dx.doi.org/10.3389/fnins.2012.00007 |
Ejemplares similares
-
Filter Bank Common Spatial Pattern Algorithm on BCI Competition IV Datasets 2a and 2b
por: Ang, Kai Keng, et al.
Publicado: (2012) -
Facilitating motor imagery-based brain–computer interface for stroke patients using passive movement
por: Arvaneh, Mahnaz, et al.
Publicado: (2016) -
Predicting Motor Imagery BCI Performance Based on EEG Microstate Analysis
por: Cui, Yujie, et al.
Publicado: (2023) -
A Review on Motor Imagery with Transcranial Alternating Current Stimulation: Bridging Motor and Cognitive Welfare for Patient Rehabilitation
por: Lim, Rosary Yuting, et al.
Publicado: (2023) -
Review of the BCI Competition IV
por: Tangermann, Michael, et al.
Publicado: (2012)