Cargando…
Extending Local Canonical Correlation Analysis to Handle General Linear Contrasts for fMRI Data
Local canonical correlation analysis (CCA) is a multivariate method that has been proposed to more accurately determine activation patterns in fMRI data. In its conventional formulation, CCA has several drawbacks that limit its usefulness in fMRI. A major drawback is that, unlike the general linear...
Autores principales: | Jin, Mingwu, Nandy, Rajesh, Curran, Tim, Cordes, Dietmar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3272863/ https://www.ncbi.nlm.nih.gov/pubmed/22461786 http://dx.doi.org/10.1155/2012/574971 |
Ejemplares similares
-
The Smoothing Artifact of Spatially Constrained Canonical Correlation Analysis in Functional MRI
por: Cordes, Dietmar, et al.
Publicado: (2012) -
Energy-Period Profiles of Brain Networks in Group fMRI Resting-State Data: A Comparison of Empirical Mode Decomposition With the Short-Time Fourier Transform and the Discrete Wavelet Transform
por: Cordes, Dietmar, et al.
Publicado: (2021) -
Microcanonical and Canonical Ensembles for fMRI Brain Networks in Alzheimer’s Disease
por: Wang, Jianjia, et al.
Publicado: (2021) -
Linear systems analysis for laminar fMRI: Evaluating BOLD amplitude scaling for luminance contrast manipulations
por: van Dijk, Jelle A., et al.
Publicado: (2020) -
Combining arterial blood contrast with BOLD increases fMRI intracortical contrast
por: Priovoulos, Nikos, et al.
Publicado: (2023)