Cargando…

What we talk about when we talk about capacitance measured with the voltage-clamp step method

Capacitance is a fundamental neuronal property. One common way to measure capacitance is to deliver a small voltage-clamp step that is long enough for the clamp current to come to steady state, and then to divide the integrated transient charge by the voltage-clamp step size. In an isopotential neur...

Descripción completa

Detalles Bibliográficos
Autor principal: Taylor, Adam L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer US 2011
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3273682/
https://www.ncbi.nlm.nih.gov/pubmed/21713564
http://dx.doi.org/10.1007/s10827-011-0346-8
Descripción
Sumario:Capacitance is a fundamental neuronal property. One common way to measure capacitance is to deliver a small voltage-clamp step that is long enough for the clamp current to come to steady state, and then to divide the integrated transient charge by the voltage-clamp step size. In an isopotential neuron, this method is known to measure the total cell capacitance. However, in a cell that is not isopotential, this measures only a fraction of the total capacitance. This has generally been thought of as measuring the capacitance of the “well-clamped” part of the membrane, but the exact meaning of this has been unclear. Here, we show that the capacitance measured in this way is a weighted sum of the total capacitance, where the weight for a given small patch of membrane is determined by the voltage deflection at that patch, as a fraction of the voltage-clamp step size. This quantifies precisely what it means to measure the capacitance of the “well-clamped” part of the neuron. Furthermore, it reveals that the voltage-clamp step method measures a well-defined quantity, one that may be more useful than the total cell capacitance for normalizing conductances measured in voltage-clamp in nonisopotential cells.