Cargando…
An Autonomous Wearable System for Predicting and Detecting Localised Muscle Fatigue
Muscle fatigue is an established area of research and various types of muscle fatigue have been clinically investigated in order to fully understand the condition. This paper demonstrates a non-invasive technique used to automate the fatigue detection and prediction process. The system utilises the...
Autores principales: | Al-Mulla, Mohamed R., Sepulveda, Francisco, Colley, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274008/ https://www.ncbi.nlm.nih.gov/pubmed/22319367 http://dx.doi.org/10.3390/s110201542 |
Ejemplares similares
-
A Review of Non-Invasive Techniques to Detect and Predict Localised Muscle Fatigue
por: Al-Mulla, Mohamed R., et al.
Publicado: (2011) -
Novel Feature Modelling the Prediction and Detection of sEMG Muscle Fatigue towards an Automated Wearable System
por: Al-Mulla, Mohamed R., et al.
Publicado: (2010) -
Novel Pseudo-Wavelet Function for MMG Signal Extraction during Dynamic Fatiguing Contractions
por: Al-Mulla, Mohamed R., et al.
Publicado: (2014) -
Towards Detecting Biceps Muscle Fatigue in Gym Activity Using Wearables
por: Elshafei, Mohamed, et al.
Publicado: (2021) -
A Review on Technologies for Localisation and Navigation in Autonomous Railway Maintenance Systems
por: Rahimi, Masoumeh, et al.
Publicado: (2022)