Cargando…
Leg Motion Classification with Artificial Neural Networks Using Wavelet-Based Features of Gyroscope Signals
We extract the informative features of gyroscope signals using the discrete wavelet transform (DWT) decomposition and provide them as input to multi-layer feed-forward artificial neural networks (ANNs) for leg motion classification. Since the DWT is based on correlating the analyzed signal with a pr...
Autores principales: | Ayrulu-Erdem, Birsel, Barshan, Billur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274015/ https://www.ncbi.nlm.nih.gov/pubmed/22319378 http://dx.doi.org/10.3390/s110201721 |
Ejemplares similares
-
Classifying Human Leg Motions with Uniaxial Piezoelectric Gyroscopes
por: Tunçel, Orkun, et al.
Publicado: (2009) -
Activity Recognition Invariant to Sensor Orientation with Wearable Motion Sensors
por: Yurtman, Aras, et al.
Publicado: (2017) -
Classification of Sputum Sounds Using Artificial Neural Network and Wavelet Transform
por: Shi, Yan, et al.
Publicado: (2018) -
Objective Error Criterion for Evaluation of Mapping Accuracy Based on Sensor Time-of-Flight Measurements
por: Barshan, Billur
Publicado: (2008) -
Application of Improved Wavelet Thresholding Method and an RBF Network in the Error Compensating of an MEMS Gyroscope
por: Sheng, Guangrun, et al.
Publicado: (2019)