Cargando…
Intelligent Sensing in Dynamic Environments Using Markov Decision Process
In a network of low-powered wireless sensors, it is essential to capture as many environmental events as possible while still preserving the battery life of the sensor node. This paper focuses on a real-time learning algorithm to extend the lifetime of a sensor node to sense and transmit environment...
Autores principales: | Nanayakkara, Thrishantha, Halgamuge, Malka N., Sridhar, Prasanna, Madni, Asad M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Molecular Diversity Preservation International (MDPI)
2011
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274088/ https://www.ncbi.nlm.nih.gov/pubmed/22346624 http://dx.doi.org/10.3390/s110101229 |
Ejemplares similares
-
Predicting the mean first passage time (MFPT) to reach any state for a passive dynamic walker with steady state variability
por: Wijesundera, Isuri, et al.
Publicado: (2018) -
Markov decision processes in artificial intelligence
por: Sigaud, Olivier, et al.
Publicado: (2013) -
Markov decision processes : discrete stochastic dynamic programming /
por: Puterman, Martin L.
Publicado: (1994) -
Markov Decision Processes: Discrete Stochastic Dynamic Programming
por: Puterman, Martin L
Publicado: (2005) -
Markov decision processes in practice
por: Boucherie, Richard J, et al.
Publicado: (2017)