Cargando…
A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome
BACKGROUND: Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacter...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274448/ https://www.ncbi.nlm.nih.gov/pubmed/22221385 http://dx.doi.org/10.1186/1756-0500-5-5 |
_version_ | 1782223069374316544 |
---|---|
author | Lei, Mei G Cue, David Alba, Jimena Junecko, Jennifer Graham, Justin W Lee, Chia Y |
author_facet | Lei, Mei G Cue, David Alba, Jimena Junecko, Jennifer Graham, Justin W Lee, Chia Y |
author_sort | Lei, Mei G |
collection | PubMed |
description | BACKGROUND: Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration. FINDINGS: We have developed a single-copy integration system that enables the cloning vector to integrate at a specific engineered site, within an untranscribed intergenic region, in the chromosome of Staphylococcus aureus. This system is based on the lysogenic phage L54a site-specific recombination system in which the L54a phage (attP) and chromosome (attB) attachment sites, which share an 18-bp identical core sequence, were modified with identical mutations. The integration vector, pLL102, was constructed to contain the modified L54a attP site (attP2) that was altered at 5 nucleotide positions within the core sequence. In the recipient strain, the similarly modified attB site (attB2) was inserted in an intergenic region devoid of detectable transcription read-through. Integration of the vector, which is unable to replicate in S. aureus extrachromosomally, was achieved by providing the L54a integrase gene in a plasmid in the recipient. We showed that pLL102 integrated specifically at the engineered site rather than at the native L54a attB site and that integration did not have a significant effect on transcription of genes immediately upstream or downstream of the integration site. CONCLUSIONS: In this work, we describe an E. coli-S. aureus shuttle vector that can be used to introduce any cloned gene into the S. aureus chromosome at a select site without affecting gene expression. The vector should be useful for genetic manipulation of S. aureus and for marking strains for in vivo studies. |
format | Online Article Text |
id | pubmed-3274448 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-32744482012-02-08 A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome Lei, Mei G Cue, David Alba, Jimena Junecko, Jennifer Graham, Justin W Lee, Chia Y BMC Res Notes Short Report BACKGROUND: Single-copy integration vectors based upon the site-specific recombination systems of bacteriophage are invaluable tools in the study of bacterial pathogenesis. The utility of such vectors is often limited, however, by the fact that integration often results in the inactivation of bacterial genes or has undesirable effects on gene transcription. The aim of this study is to develop an integration vector that does not have a detectable effect on gene transcription upon integration. FINDINGS: We have developed a single-copy integration system that enables the cloning vector to integrate at a specific engineered site, within an untranscribed intergenic region, in the chromosome of Staphylococcus aureus. This system is based on the lysogenic phage L54a site-specific recombination system in which the L54a phage (attP) and chromosome (attB) attachment sites, which share an 18-bp identical core sequence, were modified with identical mutations. The integration vector, pLL102, was constructed to contain the modified L54a attP site (attP2) that was altered at 5 nucleotide positions within the core sequence. In the recipient strain, the similarly modified attB site (attB2) was inserted in an intergenic region devoid of detectable transcription read-through. Integration of the vector, which is unable to replicate in S. aureus extrachromosomally, was achieved by providing the L54a integrase gene in a plasmid in the recipient. We showed that pLL102 integrated specifically at the engineered site rather than at the native L54a attB site and that integration did not have a significant effect on transcription of genes immediately upstream or downstream of the integration site. CONCLUSIONS: In this work, we describe an E. coli-S. aureus shuttle vector that can be used to introduce any cloned gene into the S. aureus chromosome at a select site without affecting gene expression. The vector should be useful for genetic manipulation of S. aureus and for marking strains for in vivo studies. BioMed Central 2012-01-05 /pmc/articles/PMC3274448/ /pubmed/22221385 http://dx.doi.org/10.1186/1756-0500-5-5 Text en Copyright ©2011 Lei et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Short Report Lei, Mei G Cue, David Alba, Jimena Junecko, Jennifer Graham, Justin W Lee, Chia Y A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title | A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title_full | A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title_fullStr | A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title_full_unstemmed | A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title_short | A single copy integration vector that integrates at an engineered site on the Staphylococcus aureus chromosome |
title_sort | single copy integration vector that integrates at an engineered site on the staphylococcus aureus chromosome |
topic | Short Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274448/ https://www.ncbi.nlm.nih.gov/pubmed/22221385 http://dx.doi.org/10.1186/1756-0500-5-5 |
work_keys_str_mv | AT leimeig asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT cuedavid asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT albajimena asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT juneckojennifer asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT grahamjustinw asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT leechiay asinglecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT leimeig singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT cuedavid singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT albajimena singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT juneckojennifer singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT grahamjustinw singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome AT leechiay singlecopyintegrationvectorthatintegratesatanengineeredsiteonthestaphylococcusaureuschromosome |