Cargando…

On the molecular mechanism of GC content variation among eubacterial genomes

BACKGROUND: As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classifie...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Hao, Zhang, Zhang, Hu, Songnian, Yu, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274465/
https://www.ncbi.nlm.nih.gov/pubmed/22230424
http://dx.doi.org/10.1186/1745-6150-7-2
_version_ 1782223073444888576
author Wu, Hao
Zhang, Zhang
Hu, Songnian
Yu, Jun
author_facet Wu, Hao
Zhang, Zhang
Hu, Songnian
Yu, Jun
author_sort Wu, Hao
collection PubMed
description BACKGROUND: As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. RESULTS: Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. CONCLUSION: Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years. REVIEWERS: This paper was reviewed by Nicolas Galtier, Adam Eyre-Walker, and Eugene Koonin.
format Online
Article
Text
id pubmed-3274465
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-32744652012-02-08 On the molecular mechanism of GC content variation among eubacterial genomes Wu, Hao Zhang, Zhang Hu, Songnian Yu, Jun Biol Direct Research BACKGROUND: As a key parameter of genome sequence variation, the GC content of bacterial genomes has been investigated for over half a century, and many hypotheses have been put forward to explain this GC content variation and its relationship to other fundamental processes. Previously, we classified eubacteria into dnaE-based groups (the dimeric combination of DNA polymerase III alpha subunits), according to a hypothesis where GC content variation is essentially governed by genome replication and DNA repair mechanisms. Further investigation led to the discovery that two major mutator genes, polC and dnaE2, may be responsible for genomic GC content variation. Consequently, an in-depth analysis was conducted to evaluate various potential intrinsic and extrinsic factors in association with GC content variation among eubacterial genomes. RESULTS: Mutator genes, especially those with dominant effects on the mutation spectra, are biased towards either GC or AT richness, and they alter genomic GC content in the two opposite directions. Increased bacterial genome size (or gene number) appears to rely on increased genomic GC content; however, it is unclear whether the changes are directly related to certain environmental pressures. Certain environmental and bacteriological features are related to GC content variation, but their trends are more obvious when analyzed under the dnaE-based grouping scheme. Most terrestrial, plant-associated, and nitrogen-fixing bacteria are members of the dnaE1|dnaE2 group, whereas most pathogenic or symbiotic bacteria in insects, and those dwelling in aquatic environments, are largely members of the dnaE1|polV group. CONCLUSION: Our studies provide several lines of evidence indicating that DNA polymerase III α subunit and its isoforms participating in either replication (such as polC) or SOS mutagenesis/translesion synthesis (such as dnaE2), play dominant roles in determining GC variability. Other environmental or bacteriological factors, such as genome size, temperature, oxygen requirement, and habitat, either play subsidiary roles or rely indirectly on different mutator genes to fine-tune the GC content. These results provide a comprehensive insight into mechanisms of GC content variation and the robustness of eubacterial genomes in adapting their ever-changing environments over billions of years. REVIEWERS: This paper was reviewed by Nicolas Galtier, Adam Eyre-Walker, and Eugene Koonin. BioMed Central 2012-01-10 /pmc/articles/PMC3274465/ /pubmed/22230424 http://dx.doi.org/10.1186/1745-6150-7-2 Text en Copyright ©2012 Wu et al; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research
Wu, Hao
Zhang, Zhang
Hu, Songnian
Yu, Jun
On the molecular mechanism of GC content variation among eubacterial genomes
title On the molecular mechanism of GC content variation among eubacterial genomes
title_full On the molecular mechanism of GC content variation among eubacterial genomes
title_fullStr On the molecular mechanism of GC content variation among eubacterial genomes
title_full_unstemmed On the molecular mechanism of GC content variation among eubacterial genomes
title_short On the molecular mechanism of GC content variation among eubacterial genomes
title_sort on the molecular mechanism of gc content variation among eubacterial genomes
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274465/
https://www.ncbi.nlm.nih.gov/pubmed/22230424
http://dx.doi.org/10.1186/1745-6150-7-2
work_keys_str_mv AT wuhao onthemolecularmechanismofgccontentvariationamongeubacterialgenomes
AT zhangzhang onthemolecularmechanismofgccontentvariationamongeubacterialgenomes
AT husongnian onthemolecularmechanismofgccontentvariationamongeubacterialgenomes
AT yujun onthemolecularmechanismofgccontentvariationamongeubacterialgenomes