Cargando…

Scattering of solitons for coupled wave-particle equations

We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold...

Descripción completa

Detalles Bibliográficos
Autores principales: Imaykin, Valery, Komech, Alexander, Vainberg, Boris
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Academic Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3274691/
https://www.ncbi.nlm.nih.gov/pubmed/22605890
http://dx.doi.org/10.1016/j.jmaa.2011.12.016
Descripción
Sumario:We establish a long time soliton asymptotics for a nonlinear system of wave equation coupled to a charged particle. The coupled system has a six-dimensional manifold of soliton solutions. We show that in the large time approximation, any solution, with an initial state close to the solitary manifold, is a sum of a soliton and a dispersive wave which is a solution to the free wave equation. It is assumed that the charge density satisfies Wiener condition which is a version of Fermi Golden Rule, and that the momenta of the charge distribution vanish up to the fourth order. The proof is based on a development of the general strategy introduced by Buslaev and Perelman: symplectic projection in Hilbert space onto the solitary manifold, modulation equations for the parameters of the projection, and decay of the transversal component.