Cargando…

DISC1-binding proteins in neural development, signalling and schizophrenia

In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecu...

Descripción completa

Detalles Bibliográficos
Autores principales: Bradshaw, Nicholas J., Porteous, David J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Pergamon Press 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3275753/
https://www.ncbi.nlm.nih.gov/pubmed/21195721
http://dx.doi.org/10.1016/j.neuropharm.2010.12.027
Descripción
Sumario:In the decade since Disrupted in Schizophrenia 1 (DISC1) was first identified it has become one of the most convincing risk genes for major mental illness. As a multi-functional scaffold protein, DISC1 has multiple identified protein interaction partners that highlight pathologically relevant molecular pathways with potential for pharmaceutical intervention. Amongst these are proteins involved in neuronal migration (e.g. APP, Dixdc1, LIS1, NDE1, NDEL1), neural progenitor proliferation (GSK3β), neurosignalling (Girdin, GSK3β, PDE4) and synaptic function (Kal7, TNIK). Furthermore, emerging evidence of genetic association (NDEL1, PCM1, PDE4B) and copy number variation (NDE1) implicate several DISC1-binding partners as risk factors for schizophrenia in their own right. Thus, a picture begins to emerge of DISC1 as a key hub for multiple critical developmental pathways within the brain, disruption of which can lead to a variety of psychiatric illness phenotypes. This article is part of a Special Issue entitled ‘Schizophrenia’.