Cargando…

Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis

Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether n...

Descripción completa

Detalles Bibliográficos
Autores principales: Nokia, Miriam S., Sisti, Helene M., Choksi, Monica R., Shors, Tracey J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277498/
https://www.ncbi.nlm.nih.gov/pubmed/22348078
http://dx.doi.org/10.1371/journal.pone.0031375
_version_ 1782223501366657024
author Nokia, Miriam S.
Sisti, Helene M.
Choksi, Monica R.
Shors, Tracey J.
author_facet Nokia, Miriam S.
Sisti, Helene M.
Choksi, Monica R.
Shors, Tracey J.
author_sort Nokia, Miriam S.
collection PubMed
description Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning.
format Online
Article
Text
id pubmed-3277498
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-32774982012-02-17 Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis Nokia, Miriam S. Sisti, Helene M. Choksi, Monica R. Shors, Tracey J. PLoS One Research Article Animals in the natural world continuously encounter learning experiences of varying degrees of novelty. New neurons in the hippocampus are especially responsive to learning associations between novel events and more cells survive if a novel and challenging task is learned. One might wonder whether new neurons would be rescued from death upon each new learning experience or whether there is an internal control system that limits the number of cells that are retained as a function of learning. In this experiment, it was hypothesized that learning a task that was similar in content to one already learned previously would not increase cell survival. We further hypothesized that in situations in which the cells are rescued hippocampal theta oscillations (3–12 Hz) would be involved and perhaps necessary for increasing cell survival. Both hypotheses were disproved. Adult male Sprague-Dawley rats were trained on two similar hippocampus-dependent tasks, trace and very-long delay eyeblink conditioning, while recording hippocampal local-field potentials. Cells that were generated after training on the first task were labeled with bromodeoxyuridine and quantified after training on both tasks had ceased. Spontaneous theta activity predicted performance on the first task and the conditioned stimulus induced a theta-band response early in learning the first task. As expected, performance on the first task correlated with performance on the second task. However, theta activity did not increase during training on the second task, even though more cells were present in animals that had learned. Therefore, as long as learning occurs, relatively small changes in the environment are sufficient to increase the number of surviving neurons in the adult hippocampus and they can do so in the absence of an increase in theta activity. In conclusion, these data argue against an upper limit on the number of neurons that can be rescued from death by learning. Public Library of Science 2012-02-10 /pmc/articles/PMC3277498/ /pubmed/22348078 http://dx.doi.org/10.1371/journal.pone.0031375 Text en Nokia et al. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited.
spellingShingle Research Article
Nokia, Miriam S.
Sisti, Helene M.
Choksi, Monica R.
Shors, Tracey J.
Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title_full Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title_fullStr Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title_full_unstemmed Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title_short Learning to Learn: Theta Oscillations Predict New Learning, which Enhances Related Learning and Neurogenesis
title_sort learning to learn: theta oscillations predict new learning, which enhances related learning and neurogenesis
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3277498/
https://www.ncbi.nlm.nih.gov/pubmed/22348078
http://dx.doi.org/10.1371/journal.pone.0031375
work_keys_str_mv AT nokiamiriams learningtolearnthetaoscillationspredictnewlearningwhichenhancesrelatedlearningandneurogenesis
AT sistihelenem learningtolearnthetaoscillationspredictnewlearningwhichenhancesrelatedlearningandneurogenesis
AT choksimonicar learningtolearnthetaoscillationspredictnewlearningwhichenhancesrelatedlearningandneurogenesis
AT shorstraceyj learningtolearnthetaoscillationspredictnewlearningwhichenhancesrelatedlearningandneurogenesis